【题目】定义:在平面直角坐标系中,把点先向右平移1个单位,再向上平移2个单位的平移称为一次斜平移.已知点A(1,0),点A经过n次斜平移得到点B,点M是线段AB的中点.
(1)当n=3时,点B的坐标是 ,点M的坐标是 ;
(2)如图1,当点M落在的图像上,求n的值;
(3)如图2,当点M落在直线上,点C是点B关于直线的对称点,BC与直线相交于点N.
①求证:△ABC是直角三角形
②当点C的坐标为(5,3)时,求MN的长.
【答案】(1),;(2)2;(3)①详见解析;②
【解析】
(1)由题中斜平移及中点公式即可求得;
(2)根据定义,表达出点M的坐标,再代入反比例函数中计算即可;
(3)①根据中心对称及轴对称得到,再由等腰三角形的性质进行角度运算得出即可证明;
②由平行得出△BMN∽△BAC,再根据比例关系得出MN的长度即可.
解:(1)当n=3时,点A(1,0)向右平移3个单位,向上平移6个单位得到点B,
∴点B,
由中点公式可得,,
∴点M,
故答案为:,
(2)由定义可知B(n+1,2n),
∴点M,
∴当点M在上时,
有,
解得,
∵n>0,
∴
(3)①连接,如图:
由中心对称可知,
由轴对称可知,
∴
∴,
,
是直角三角形;
②过点作于点,如图:
∵,,,,
在直角三角形中,
∴△BMN∽△BAC
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD的边长AD=6,AB=4,E为AB的中点,F在边BC上,且BF=2FC,AF分别与DE、DB相交于点M、N,则MN的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知y是x的函数,自变量x的取值范围是x≠0的全体实数,如表是y与x的几组对应值.
x | … | ﹣3 | ﹣2 | ﹣1 | ﹣ | ﹣ | 1 | 2 | 3 | … | ||
y | … | ﹣ | ﹣ | ﹣ | m | … |
小华根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小华的探究过程,请补充完整:
(1)从表格中读出,当自变量是﹣2时,函数值是 ;
(2)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;
(3)在画出的函数图象上标出x=2时所对应的点,并写出m= .
(4)结合函数的图象,写出该函数的一条性质: .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数,完成下列各题:
(1)将函数关系式用配方法化为 y=a(x+h)2+k形式,并写出它的顶点坐标、对称轴.
(2)若它的图象与x轴交于A、B两点,顶点为C,求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在扇形AOB中,∠AOB=90°,正方形CDEF的顶点C是的中点,点D在OB上,点E在OB的延长线上,当正方形CDEF的边长为2时,阴影部分的面积为________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD的顶点在⊙O上,BD是⊙O的直径,延长CD、BA交于点E,连接AC、BD交于点F,作AH⊥CE,垂足为点H,已知∠ADE=∠ACB.
(1)求证:AH是⊙O的切线;
(2)若OB=4,AC=6,求sin∠ACB的值;
(3)若,求证:CD=DH.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1中,△ABC为正三角形,点E为AB边上任一点,以CE为边作正△DEC,连结AD.求的值.
(2)如图2中,△ABC为等腰直角三角形,∠A=90°,点E为腰AB上任意一点,以CE为斜边作等腰直角△CDE,连结AD.求的值;
(3)如图3中,△ABC为任意等腰三角形,点E为腰AB上任意一点,以CE为底边作等腰△DEC,使△DEC∽△ABC,并且BC=AC.连结AD,直接写出的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,一次函数的图象与坐标轴围成的三角形,叫做此一次函数的坐标三角形.例如,图中的一次函数的图象与x,y轴分别交于点A,B,则△OAB为此函数的坐标三角形.
(1)求函数y=x+3的坐标三角形的三条边长;
(2)若函数y=x+b(b为常数)的坐标三角形周长为16,求此三角形面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我区某校就“经典咏流传”的喜爱情况进行了随机调查.对收集的信息进行统计,绘制了下面两幅尚不完整的统计图.请你根据所提供的信息解答:
(1)扇形统计图中C部分所对应的扇形圆心角的度数为______,补全条形统计图;
(2)在抽取的A类5人中,刚好有3个女生2个男生,从中随机抽取两个同学担任两角色,用树形图或列表法求出被抽到的两个学生性别相同的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com