【题目】我区某校就“经典咏流传”的喜爱情况进行了随机调查.对收集的信息进行统计,绘制了下面两幅尚不完整的统计图.请你根据所提供的信息解答:
(1)扇形统计图中C部分所对应的扇形圆心角的度数为______,补全条形统计图;
(2)在抽取的A类5人中,刚好有3个女生2个男生,从中随机抽取两个同学担任两角色,用树形图或列表法求出被抽到的两个学生性别相同的概率.
【答案】(1)216°;补图见解析;(2).
【解析】
(1)先根据A类别人数及其所占百分比求出总人数,再用360°乘以C类别人数所占比例可得其对应圆心角度数,总人数减去A.C.D人数求出B类别人数可补全图形;
(2)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解可得.
解:(1)∵被调查的总人数为5÷10%=50(人),
∴扇形统计图中C部分所对应的扇形圆心角的度数为360°×=216°,
B类别人数为50-(5+30+5)=10(人)
补全图形如下:
故答案为:216°;
(2)列出下表:
女1 | 女2 | 女3 | 男1 | 男2 | |
女1 | --- | 女2女1 | 女3女1 | 男1女1 | 男2女1 |
女2 | 女1女2 | --- | 女3女2 | 男1女2 | 男2女2 |
女3 | 女1女3 | 女2女3 | --- | 男1女3 | 男2女3 |
男1 | 女1男1 | 女2男1 | 女3男1 | --- | 男2男1 |
男2 | 女1男2 | 女2男2 | 女3男2 | 男1男2 | --- |
所有等可能的结果为20种,其中被抽到的两个学生性别相同的结果数为8,
∴被抽到的两个学生性别相同的概率为.
科目:初中数学 来源: 题型:
【题目】定义:在平面直角坐标系中,把点先向右平移1个单位,再向上平移2个单位的平移称为一次斜平移.已知点A(1,0),点A经过n次斜平移得到点B,点M是线段AB的中点.
(1)当n=3时,点B的坐标是 ,点M的坐标是 ;
(2)如图1,当点M落在的图像上,求n的值;
(3)如图2,当点M落在直线上,点C是点B关于直线的对称点,BC与直线相交于点N.
①求证:△ABC是直角三角形
②当点C的坐标为(5,3)时,求MN的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线分别交轴、轴于点、,抛物线过,两点,点是线段上一动点,过点作轴于点,交抛物线于点.
(1)若抛物线的解析式为,设其顶点为,其对称轴交于点.
①求点和点的坐标;
②在抛物线的对称轴上找一点,使的值最大,请直接写出点的坐标;
③是否存在点,使四边形为菱形?并说明理由;
(2)当点的横坐标为1时,是否存在这样的抛物线,使得以、、为顶点的三角形与相似?若存在,求出满足条件的抛物线的解析式;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,抛物线与y轴交于点C(0,2),它的顶点为D(1,m),且.
(1)求m的值及抛物线的表达式;
(2)将此抛物线向上平移后与x轴正半轴交于点A,与y轴交于点B,且OA=OB.若点A是由原抛物线上的点E平移所得,求点E的坐标;
(3)在(2)的条件下,点P是抛物线对称轴上的一点(位于x轴上方),且∠APB=45°.求P点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,矩形OABC的顶点B的坐标为(2,4),抛物线y=-2x2+bx+c经过A、C两点,与x轴的另一个交点为点D.
(1)如图1,求抛物线的函数表达式;
(2)如图2,连接AC、AD,将△ABC沿AC折叠后与AD、y轴分别交于点交于E、G,求OG的长度;
(3)如图3,将抛物线在AC上方的图象沿AC折叠后与y轴交与点F,求点F的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在大课间活动中,同学们积极参加体育锻炼,小明就本班同学“我最喜爱的体育项目”进行了一次调查统计,下面是他通过收集数据后,绘制的两幅不完整的统计图.请你根据图中提供的信息,解答以下问题:
(1)该班共有 名学生;
(2)补全条形统计图;
(3)在扇形统计图中,“乒乓球”部分所对应的圆心角度数为 ;
(4)学校将举办体育节,该班将推选5位同学参加乒乓球活动,有3位男同学(A,B,C)和2位女同学(D,E),现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某数学社团成员想利用所学的知识测量某广告牌的宽度图中线段MN的长,直线MN垂直于地面,垂足为点在地面A处测得点M的仰角为、点N的仰角为,在B处测得点M的仰角为,米,且A、B、P三点在一直线上请根据以上数据求广告牌的宽MN的长.
参考数据:,,,,,
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学为了预防流行性感冒,对教室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量与时间成正比例.药物燃烧后,y与x成反比例(如图所示),现测得药物6min燃毕,此时室内空气中每立方米的含药量为4mg,
(1)写出药物燃烧前后,y与x之间的函数表达式;
(2)研究表明,当空气中每立方米的含药量低于1.6mg时学生方可进教室,那么从消毒开始,至少需要经过多少分钟,学生方能回到教室?
(3)研究表明,当空气中每立方米的含药量不低于2mg且持续时间不低于9min时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com