精英家教网 > 初中数学 > 题目详情

已知抛物线C1:y=x2-2mx+n(m,n为常数,且m≠0,n<0)的顶点为A,与y轴交于点C;抛物线C2与抛物线C1关于y轴对称,其顶点为B,连接AC,BC,AB.

(1)请直接写出抛物线C2的解析式;
(2)当m=1时,判定△ABC的形状,并说明理由;
(3)当△ABC为等边三角形时,请求出m的值;并说明理由.

解:(1)∵抛物线C1、C2关于y轴对称,抛物线C1:y=x2-2mx+n,
∴抛物线C2的解析式为:y=(-x)2-2m(-x)+n,即y=x2+2mx+n;

(2)当m=1时,△ABC为等腰直角三角形.理由如下:
如图,设AB与y轴交于点D.
∵抛物线C1、C2关于y轴对称,
∴顶点A与顶点B关于y轴对称,
又∵点C、D都在y轴上,
∴AC=BC,CD⊥AB,∠BCD=∠ACD.
当m=1时,∵抛物线C1:y=x2-2x+n=(x-1)2+n-1,
∴顶点A的坐标为A(1,n-1),
∴D点坐标为(0,n-1),AD=1.
又∵点C的坐标为(0,n),
∴CD=n-(n-1)=1,
∴AD=CD,
∴∠ACD=45°,
∴∠BCD=∠ACD=45°,
∴∠ACB=90°,
∴△ABC为等腰直角三角形;

(3)∵抛物线C1:y=x2-2mx+n=(x-m)2+n-m2
∴顶点A的坐标为A(m,n-m2),
∴D点坐标为(0,n-m2),AD=|m|.
又∵点C的坐标为(0,n),
∴CD=n-(n-m2)=m2
当△ABC为等边三角形时,∠CAD=60°.
在Rt△ACD中,∵∠ADC=90°,
∴tan∠CAD===|m|,
∴|m|=
∴m=±
分析:(1)根据轴对称的性质可得:关于y轴对称,纵坐标不变,横坐标互为相反数,即可求得;
(2)设AB与y轴交于点D,先由轴对称的性质得出AC=BC,则△ABC是等腰三角形,再根据m=1时,可得AD=CD=1,∠BCD=∠ACD=45°,从而得出△ABC为等腰直角三角形;
(3)先求出AD=|m|,CD=m2,再根据△ABC为等边三角形得出∠CAD=60°,然后在Rt△ACD中利用正切函数的定义列出关于m的方程,解方程即可.
点评:此题考查了轴对称的性质,等腰直角三角形的判定,等边三角形的性质,锐角三角函数的定义等知识,综合性较强,难度适中.注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知抛物线C1与坐标轴的交点依次是A(-4,0),B(-2,0),E(0,8).
(1)求抛物线C1关于原点对称的抛物线C2的解析式;
(2)设抛物线C1的顶点为M,抛物线C2与x轴分别交于C,D两点(点C在点D的左侧),顶点为N,四边形MDNA的面积为S.若点A,点D同时以每秒1个单位的速度沿水平方向分别向右、向左运动;与此同时,点M,点N同时以每秒2个单位的速度沿坚直方向分别向下、向上运动,直到点A与点D重合为止.求出四边形MDNA的面积S与运动时间t之间的关系式,并写出自变量t的取值范围;
(3)当t为何值时,四边形MDNA的面积S有最大值,并求出此最大值;
(4)在运动过程中,四边形MDNA能否形成矩形?若能,求出此时t的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线C1:y=-x2+2mx+1(m为常数,且m≠0)的顶点为A,与y轴交于点C;抛物线C2与抛物线C1关于y轴对称,其顶点为B.若点P是抛物线C1上的点,使得以A、B、C、P为顶点的四边形为菱形,则m为(  )
A、±
3
B、
3
C、±
2
D、
2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线C1:y=a(x-2)2-5的顶点为P,与x轴相交于A、B两点(点A在点B的左边),点A的横坐标是-1.
(1)求P点坐标及a的值;
(2)如图(1),抛物线C2与抛物线C1关于x轴对称,将抛物线C2向左平移,平移后的抛物线记为C3,C3的顶点为M,当点P、M关于点A成中心对称时,求C3的解析式y=a(x-h)2+k;
(3)如图(2),点Q是x轴负半轴上一动点,将抛物线C1绕点Q旋转180°后得到抛物线C4.抛物线C4的顶点为N,与x轴相交于E、F两点(点E在点F的左边),当以点P、N、E为顶点的三角形是直角三角形时,求顶点N的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2010•房山区一模)已知抛物线C1:y=ax2+4ax+4a-5的顶点为P,与x轴相交于A、B两点(点A在点B的左边),点B的横坐标是1.
(1)求抛物线的解析式和顶点P的坐标;
(2)将抛物线沿x轴翻折,再向右平移,平移后的抛物线C2的顶点为M,当点P、M关于点B成中心对称时,求平移后的抛物线C2的解析式;
(3)直线y=-
35
x+m
与抛物线C1、C2的对称轴分别交于点E、F,设由点E、P、F、M构成的四边形的面积为s,试用含m的代数式表示s.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线C1:y=-x2+2mx+1(m为常数,且m≠0)的顶点为A,与y轴交于点C;抛物线C2与抛物线C1关于y轴对称,其顶点为B.若点P是抛物线C1上的点,使得以A、B、C、P为顶点的四边形为菱形,则m的值为
±
3
±
3

查看答案和解析>>

同步练习册答案