精英家教网 > 初中数学 > 题目详情

【题目】在菱形ABCD中,对角线ACBD相交于点O,再添加一个条件,仍不能判定四边形ABCD是矩形的是 (  )

A.ABADB.OAOBC.ACBDD.DCBC

【答案】A

【解析】

根据有一个角是直角的平行四边形是矩形,对角线相等的平行四边形是矩形,对各选项分析判断后利用排除法求解.

AABAD,则ABCD是菱形,不能判定是矩形,故本选项错误;

BOAOB,根据平行四边形的对角线互相平分,ACBD,对角线相等的平行四边形是矩形可得ABCD是矩形,故本选项正确;

CACBD,根据对角线相等的平行四边形是矩形,故本选项正确;

DDCBC,则∠BCD90°,根据有一个角是直角的平行四边形是矩形可得ABCD是矩形,故本选项正确.

故选:A

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】五一假期,黔西南州某公司组织部分员工分别到甲、乙、丙、丁四地考察,公司按定额购买了前往各地的车票,如图所示是用来制作完整的车票种类和相应数量的条形统计图,根据统计图回答下列问题:

1)若去丁地的车票占全部车票的10%,请求出去丁地的车票数量,并补全统计图(如图所示).

2)若公司采用随机抽取的方式发车票,小胡先从所有的车票中随机抽取一张(所有车票的形状、大小、质地完全相同、均匀),那么员工小胡抽到去甲地的车票的概率是多少?

3)若有一张车票,小王和小李都想去,决定采取摸球的方式确定,具体规则:每人从不透明袋子中摸出分别标有1234的四个球中摸出一球(球除数字不同外完全相同),并放回让另一人摸,若小王摸得的数字比小李的小,车票给小王,否则给小李.试用列表法或画树状图的方法分析这个规则对双方是否公平?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某种商品的标价为600/件,经过两次降价后的价格为486/件,并且两次降价的百分率相同.

(1)求该种商品每次降价的百分率;

(2)若该种商品进价为460/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3788.问第一次降价后至少要售出该种商品多少件?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=﹣x+4与坐标轴分别交于点AB,与直线yx交于点C.在线段OA上,动点Q以每秒1个单位长度的速度从点O出发向点A做匀速运动,同时动点P从点A出发向点O做匀速运动,当点PQ其中一点停止运动时,另一点也停止运动.分别过点PQx轴的垂线,交直线ABOC于点EF,连接EF.若运动时间为t秒,在运动过程中四边形PEFQ总为矩形(点PQ重合除外).

1)求点P运动的速度是多少?

2)当t为多少秒时,矩形PEFQ为正方形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 “赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:

请结合图表完成下列各题:

(1)①表中a的值为 ,中位数在第 组;

频数分布直方图补充完整;

(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少?

(3)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小明与小强两名男同学能分在同一组的概率.

组别

成绩x分

频数(人数)

第1组

50≤x<60

6

第2组

60≤x<70

8

第3组

70≤x<80

14

第4组

80≤x<90

a

第5组

90≤x<100

10

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直于x轴,垂足为点B,反比例函数y(x0)的图象经过AO的中点C,交AB于点D,且AD3

(1)设点A的坐标为(44)则点C的坐标为   

(2)若点D的坐标为(4n)

求反比例函数y的表达式;

求经过CD两点的直线所对应的函数解析式;

(3)(2)的条件下,设点E是线段CD上的动点(不与点CD重合),过点E且平行y轴的直线l与反比例函数的图象交于点F,求△OEF面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为更精准地关爱留守学生,某学校将留守学生的各种情形分成四种类型:A.由父母一方照看;B.由爷爷奶奶照看;C.由叔姨等近亲照看;D.直接寄宿学校.某数学小组随机调查了一个班级,发现该班留守学生数量占全班总人数的20%,并将调查结果制成如下两幅不完整的统计图.

1)该班共有   名留守学生,B类型留守学生所在扇形的圆心角的度数为   

2)将条形统计图补充完整;

3)已知该校共有2400名学生,现学校打算对D类型的留守学生进行手拉手关爱活动,请你估计该校将有多少名留守学生在此关爱活动中受益?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知:抛物线yax+1)(x3)与x轴相交于AB两点,与y轴的交于点C0,﹣3).

1)求抛物线的解析式的一般式.

2)若抛物线上有一点P,满足∠ACO=∠PCB,求P点坐标.

3)直线lykxk+2与抛物线交于EF两点,当点B到直线l的距离最大时,求BEF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,二次函数)的图象与x轴交于A﹣20)、B80)两点,与y轴交于点B,其对称轴与x轴交于点D

1)求该二次函数的解析式;

2)如图1,连结BC,在线段BC上是否存在点E,使得△CDE为等腰三角形?若存在,求出所有符合条件的点E的坐标;若不存在,请说明理由;

3)如图2,若点Pmn)是该二次函数图象上的一个动点(其中m0n0),连结PBPDBD,求△BDP面积的最大值及此时点P的坐标.

查看答案和解析>>

同步练习册答案