精英家教网 > 初中数学 > 题目详情

【题目】如图,这是一座抛物线形拱桥,当拱顶离水面2m时,水面宽4m,水面下降1m时,水面宽多少?

【答案】

【解析】

根据已知得出直角坐标系,进而求出二次函数解析式,再通过把y=1代入抛物线解析式得出水面宽度,即可得出答案.

解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,

抛物线以y轴为对称轴,且经过AB两点,OAOB可求出为AB的一半2米,抛物线顶点C坐标为(02)

通过以上条件可设顶点式

A(20)代入,可得:a=0.5,所以抛物线解析式为

当水面下降1米,通过抛物线在图上的观察可转化为:

y=1时,对应的抛物线上两点之间的距离,也就是直线y=1与抛物线相交的两点之间的距离,

y=1代入抛物线解析式得出:

解得:

所以水面宽度为.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】九年级一班开展了读一本好书的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了小说”“戏剧”“散文”“其他四个类型,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.

类别

频数(人数)

频率

小说

0.5

戏剧

4

散文

10

0.25

其他

6

合计

1

根据图表提供的信息,解答下列问题:

1)九年级一班有多少名学生?

2)请补全频数分布表,并求出扇形统计图中其他类所占的百分比;

3)在调查问卷中,甲、乙、丙、丁四位同学选择了戏剧类,现从以上四位同学中任意选出 2 名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的 2 人恰好是乙和丙的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,矩形的边轴上,的长分别是一元二次方程的两个根,边轴于点,动点以每秒个单位长度的速度,从点出发沿折线段向点运动,运动的时间为秒,设与矩形重叠部分的面积为

1)求点的坐标;

2)求关于的函数关系式,并写出自变量的取值范围;

3)在点的运动过程中,是否存在,使为等腰三角形?若存在,直接写出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数的图象如图所示,对称轴是直线.下列结论:①;②;③;④(为实数).其中结论正确的个数为( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1是实验室中的一种摆动装置,在地面上,支架是底边为的等腰直角三角形,摆动臂可绕点旋转,摆动臂可绕点旋转, .

1)在旋转过程中,当为同一直角三角形的顶点时,的长为______________.

2)若摆动臂顺时针旋转90°,点的位置由外的点转到其内的点处,连结,如图2,此时的长为______________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列是中心对称图形但不是轴对称图形的是(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图中,是边上一点,,过点三点的于点,点上,连接

(1)求证:是等腰三角形;

(2),请用题意可以推出的结论说明命题:“一组对边相等,且一组对角相等的四边形是平行四边形”是假命题

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】新春佳节,电子鞭炮因其安全、无污染开始走俏.某商店经销一种电子鞭炮,已知这种电子鞭炮的成本价为每盒80元,市场调查发现,该种电子鞭炮每天的销售量y(盒)与销售单价x(元)有如下关系:y=﹣2x+320(80≤x≤160).设这种电子鞭炮每天的销售利润为w元.

(1)求wx之间的函数关系式;

(2)该种电子鞭炮销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?

(3)该商店销售这种电子鞭炮要想每天获得2400元的销售利润,又想买得快.那么销售单价应定为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知D,E分别为ABC的边AB,BC上两点,点A,C,E在⊙D上,点B,D在⊙E上.F上一点,连接FE并延长交AC的延长线于点N,交AB于点M.

(1)若∠EBDα,请将∠CAD用含α的代数式表示;

(2)若EM=MB,请说明当∠CAD为多少度时,直线EF为⊙D的切线;

(3)在(2)的条件下,若AD=,求的值.

查看答案和解析>>

同步练习册答案