精英家教网 > 初中数学 > 题目详情

【题目】给出如下规定:两个图形G1和G2 , 点P为G1上任一点,点Q为G2上任一点,如果线段PQ的长度存在最小值,就称该最小值为两个图形G1和G2之间的距离.在平面直角坐标系xOy中,O为坐标原点.
(1)点A的坐标为A(1,0),则点B(2,3)和射线OA之间的距离为 , 点C(﹣2,3)和射线OA之间的距离为
(2)如果直线y=x+1和双曲线y= 之间的距离为 ,那么k=;(可在图1中进行研究)

(3)点E的坐标为(1, ),将射线OE绕原点O顺时针旋转120°,得到射线OF,在坐标平面内所有和射线OE,OF之间的距离相等的点所组成的图形记为图形M.
①请在图2中画出图形M,并描述图形M的组成部分;(若涉及平面中某个区域时可以用阴影表示).
②将射线OE,OF组成的图形记为图形W,直线y=﹣2x﹣4与图形M的公共部分记为图形N,请求出图形W和图形N之间的距离.

【答案】
(1)3;
(2)﹣4
(3)

解:①如图,x轴正半轴,∠GOH的边及其内部的所有点(OH、OG分别与OE、OF垂直),

②由①知OH所在直线解析式为y=﹣ x,OG所在直线解析式为y= x,

,即点M(﹣ ),

得: ,即点N(﹣ ),

则﹣ ≤x≤﹣

图形N(即线段MN)上点的坐标可设为(x,﹣2x﹣4),

即图形W与图形N之间的距离为d,

d=

=

=

∴当x=﹣ 时,d的最小值为 =

即图形W和图形N之间的距离


【解析】解:(1)点(2,3)和射线OA之间的距离为3,点(﹣2,3)和射线OA之间的距离为 =
故答案分别为:3,
·(2)∵直线y=x+1和双曲线y= 之间的距离为
∴k<0(否则直线y=x+1和双曲线y= 相交,它们之间的距离为0).
过点O作直线y=x+1的垂线y=﹣x,与双曲线y= 交于点E、F,过点E作EG⊥x轴,如图1,

,即点F(﹣ ),
则OF= =
∴OE=OF+EF=2
在Rt△OEG中,∠EOG=∠OEG=45°,OE=2
则有OG=EG= OE=2,
∴点E的坐标为(﹣2,2),
∴k=﹣2×2=﹣4,
故答案为:﹣4;
(1)只需根据新定义即可解决问题;(2)过点O作直线y=x+1的垂线,与双曲线y= 交于点E、F,过点E作EG⊥x轴,如图1,根据新定义可得直线y=﹣x和双曲线y= 之间的距离就是线段EF的长,如何只需求出点E的坐标,运用待定系数法就可求出k的值;(3)①过点O分别作射线OE、OF的垂线OH、OG,如图2,根据新定义可得图形M为x轴的正半轴、∠GOH的边及其内部所有的点;②设直线y=﹣2x﹣4与射线OH的交点为M,与射线OG的交点为N,先求得M、N的坐标,得出x的范围,如图2,图形N上点的坐标可设为(x,﹣2x﹣4),根据新定义可得图形W与图形N之间的距离为d= 的最小值.利用二次函数的增减性求出d= 的最小值,就可解决问题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】计算:|1﹣2sin45°|﹣ +( 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=3,BC=4.动点P从点A出发沿AC向终点C运动,同时动点Q从点B出发沿BA向点A运动,到达A点后立刻以原来的速度沿AB返回.点P,Q运动速度均为每秒1个单位长度,当点P到达点C时停止运动,点Q也同时停止.连结PQ,设运动时间为t(t>0)秒.

(1)在点Q从B到A的运动过程中,
①当t=时,PQ⊥AC;
(2)②求△APQ的面积S关于t的函数关系式,并写出t的取值范围;
(3)伴随着P、Q两点的运动,线段PQ的垂直平分线为l.
①当l经过点A时,射线QP交AD于点E,求AE的长;
②当l经过点B时,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一个瓶子的容积为1 L,瓶内装着溶液,当瓶子正放时,瓶内溶液的高度为20 cm,当瓶子倒放时,空余部分的高度为5 cm.现把瓶内的溶液全部倒在一个圆柱形的杯子里,杯内的溶液高度为10 cm.

求:(1)瓶内溶液的体积;

(2)圆柱形杯子的内底面半径(π取3.14,结果精确到0.1 cm).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:一辆汽车在一个十字路口遇到红灯刹车停下,汽车里的驾驶员看地面的斑马线前后两端的视角分别是∠DCA=30°和∠DCB=60°,如果斑马线的宽度是AB=3米,驾驶员与车头的距离是0.8米,这时汽车车头与斑马线的距离x是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知正方形ABCD的边长为4,点E、F分别在边AB、ABC上,且AE=BF=1,CE、DF相交于点O,下列结论: ①∠DOC=90°,②OC=OE,③tan∠OCD= ,④△COD的面积等于四边形BEOF的面积中,正确的有 (

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y= x2+bx+c经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC∥x轴,点P是直线AC下方抛物线上的动点.

(1)求抛物线的解析式;
(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;
(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,抛物线y=﹣ x2+ x+3与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,抛物线的顶点为点E.

(1)判断△ABC的形状,并说明理由;
(2)经过B,C两点的直线交抛物线的对称轴于点D,点P为直线BC上方抛物线上的一动点,当△PCD的面积最大时,Q从点P出发,先沿适当的路径运动到抛物线的对称轴上点M处,再沿垂直于抛物线对称轴的方向运动到y轴上的点N处,最后沿适当的路径运动到点A处停止.当点Q的运动路径最短时,求点N的坐标及点Q经过的最短路径的长;
(3)如图2,平移抛物线,使抛物线的顶点E在射线AE上移动,点E平移后的对应点为点E′,点A的对应点为点A′,将△AOC绕点O顺时针旋转至△A1OC1的位置,点A,C的对应点分别为点A1 , C1 , 且点A1恰好落在AC上,连接C1A′,C1E′,△A′C1E′是否能为等腰三角形?若能,请求出所有符合条件的点E′的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,将△ABO绕点B顺时针旋转到△A1BO1的位置,使点A的对应点A1落在直线y= x上,再将△A1BO1绕点A1顺时针旋转到△A1B1O2的位置,使点O1的对应点O2落在直线y= x上,依次进行下去…,若点A的坐标是(0,1),点B的坐标是( ,1),则点A8的横坐标是

查看答案和解析>>

同步练习册答案