【题目】如图,矩形纸片ABCD中,AD=5,AB=3.若M为射线AD上的一个动点,将△ABM沿BM折叠得到△NBM.若△NBC是直角三角形.则所有符合条件的M点所对应的AM长度的和为_____.
【答案】10.
【解析】
根据四边形ABCD为矩形以及折叠的性质得到∠A=∠MNB=90°,由M为射线AD上的一个动点可知若△NBC是直角三角形,∠NBC=90°与∠NCB=90°都不符合题意,只有∠BNC=90°.然后分N在矩形ABCD内部与N在矩形ABCD外部两种情况进行讨论,利用勾股定理求得结论即可.
∵四边形ABCD为矩形,
∴∠BAD=90°,
∵将△ABM沿BM折叠得到△NBM,
∴∠MAB=∠MNB=90°.
∵M为射线AD上的一个动点,△NBC是直角三角形,
∴∠NBC=90°与∠NCB=90°都不符合题意,
∴只有∠BNC=90°.
①
当∠BNC=90°,N在矩形ABCD内部,如图1.
∵∠BNC=∠MNB=90°,
∴M、N、C三点共线,
∵AB=BN=3,BC=5,∠BNC=90°,
∴NC=4.
设AM=MN=x,
∵MD=5﹣x,MC=4+x,
∴在Rt△MDC中,CD2+MD2=MC2,
32+(5﹣x)2=(4+x)2,
解得x=1;
当∠BNC=90°,N在矩形ABCD外部时,如图2.
∵∠BNC=∠MNB=90°,
∴M、C、N三点共线,
∵AB=BN=3,BC=5,∠BNC=90°,
∴NC=4,
设AM=MN=y,
∵MD=y﹣5,MC=y﹣4,
∴在Rt△MDC中,CD2+MD2=MC2,
32+(y﹣5)2=(y﹣4)2,
解得y=9,
则所有符合条件的M点所对应的AM和为1+9=10.
故答案为10.
科目:初中数学 来源: 题型:
【题目】如图,直线与x轴交于点,与y轴交于点B,抛物线经过点.
求k的值和抛物线的解析式;
为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点.
若以为顶点的四边形OBNP是平行四边形时,求m的值.
连接BN,当时,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0),B(3,0)两点,与y轴交于点C(0,﹣3).
(1)求该抛物线的解析式及顶点M坐标;
(2)求△BCM面积与△ABC面积的比;
(3)若P是x轴上一个动点,过P作射线PQ∥AC交抛物线于点Q,随着P点的运动,在抛物线上是否存在这样的点Q,使以A,P,Q,C为顶点的四边形为平行四边形?若存在,请求出Q点坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点B,C,D在同一条直线上,∠B=∠D=90°,△ABC≌△CDE,AB=6,BC=8,CE=10.
(1)求△ABC的周长;
(2)求△ACE的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,我们知道,从A地到B地有四条道路,除它们外,可以再修一条从A地到B地的最短道路.解答下列问题:
(1)请你在图上画出最短线路?
(2)你这样画的理由是“两点决定一条直线”呢,还是“两点之间,线段最短”?
(3)如果已知三点A、B、C在同一条直线上,且AB=5,BC=2,求AC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间的关系如图所示.根据图象所提供的信息,下列说法正确的是( )
A. 甲队开挖到30 m时,用了2 h
B. 开挖6 h时,甲队比乙队多挖了60 m
C. 乙队在0≤x≤6的时段,y与x之间的关系式为y=5x+20
D. 当x为4 h时,甲、乙两队所挖河渠的长度相等
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】
(1)数轴上表示5与﹣2两点之间的距离是 ,
(2)数轴上表示x与2的两点之间的距离可以表示为 .
(3)如果|x﹣2|=5,则x= .
(4)同理|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,请你找出所有符合条件的整数x,使得|x+3|+|x﹣1|=4,这样的整数是 .
(5)由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,数轴上有A、B两点.
⑴分别写出A、B两点表示的数 、 ;
⑵若点C表示,请你把点C表示在如图所示的数轴上;
⑶若点D与点A表示的两个数互为相反数,则点D表示的数是 ;
⑷将A、B、C、D四个点所表示的数用“>”连接起来;
⑸C、D两点之间的距离是 ;
⑹上述问题体现了 的数学思想.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com