【题目】如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.
(1)试说明AC=EF;
(2)求证:四边形ADFE是平行四边形.
【答案】
【1】∵△ABE是等边三角形,
∴AB=AE,∠EAF=60,
又∵∠BAC=30,∠ACB=90,
∴∠ACB=60, ∴∠EAF=∠ACB,
又∵∠ACB="∠AEF=90" ,∴△ABC≌△EAF.
∴AC=EF.
【2】∵△ADC是等边三角形,∴AD=AC,∠DAC=60,
∴AD= EF,
又∵∠CAB=30,∴∠DAB=90,
∵∠AEF="90" ,∴AD∥EF
∴四边形ADFE是平行四边形.
【解析】证明:(1)∵△ABE是等边三角形,EF⊥AB,
∴∠AEF =∠AEB= 30,AE=AB,∠EFA= 90.
∵∠ACB= 90,∠BAC= 30,
∴∠EFA=∠ACB,∠AEF=∠BAC.
∴△AEF≌△BAC.
∴AC = EF.
(2)∵△ACD是等边三角形,
∴AC = AD,∠DAC= 60.
由(1)的结论得AC = EF,
∴AD= EF.
∵∠BAC= 30,
∴∠FAD=∠BAC+∠DAC= 90.
∵∠EFA= 90,
∴EF∥AD.
∵EF=AD,
∴四边形ADFE是平行四边形.
科目:初中数学 来源: 题型:
【题目】探索规律:观察下面由※组成的图案和算式,解答问题:
1+3=22=4
1+3+5=32=9
1+3+5+7=42=16
1+3+5+7+9=52=25
(1)猜想1+3+5+7+9+…+29= = ;
(2)猜想1+3+5+7+9+…+(2n﹣1)+(2n+1)= = ;
(3)用上述规律计算:41+43+45+…+77+79.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】以下四个命题:①一个多边形的内角和为900°,从这个多边形同一个顶点可画的对角线有4条;②三角形的三条高所在的直线的交点可能在三角形的内部或外部;③多边形的所有内角中最多有3个锐角;④△ABC中,若∠A=2∠B=3∠C,则△ABC为直角三角形.其中真命题的是_______________.(填序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校将举办“心怀感恩孝敬父母”的活动,为此,校学生会就全校1 000名同学暑假期间平均每天做家务活的时间,随机抽取部分同学进行调查,并绘制成如下条形统计图.
(1)本次调查抽取的人数为 , 估计全校同学在暑假期间平均每天做家务活的时间在40分钟以上(含40分钟)的人数为;
(2)校学生会拟在表现突出的甲、乙、丙、丁四名同学中,随机抽取两名同学向全校汇报.请用树状图或列表法表示出所有可能的结果,并求恰好抽到甲、乙两名同学的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知线段AB。
(1)用尺规作图的方法作出线段AB的垂直平分线l(保留作图痕迹,不要求写出作法);
(2)在(1)中所作的直线l上任意取两点M、N(线段AB的上方),连接AM、AN。BM、BN。
求证:∠MAN=∠MBN。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】雷达二维平面定位的主要原理是:测量目标的两个信息―距离和角度,目标的表示方法为,其中,m表示目标与探测器的距离;表示以正东为始边,逆时针旋转后的角度.如图,雷达探测器显示在点A,B,C处有目标出现,其中,目标A的位置表示为,目标C的位置表示为.用这种方法表示目标B的位置,正确的是( )
A. (-4, 150°) B. (4, 150°) C. (-2, 150°) D. (2, 150°)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为保护环境,我市公交公司计划购买A型和B型两种环保节能公交车共10辆.若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.
(1)求购买A型和B型公交车每辆各需多少万元?
(2)预计在某线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?
(3)在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com