分析 (1)解两函数组成的方程组,得出一个医院二次方程,根据根的判别式即可求出答案;
(2)分为三种情况,结合图形比较即可.
解答 解:(1)$\left\{\begin{array}{l}{y=\frac{6}{x}①}\\{y=kx+4②}\end{array}\right.$
把①代入②得:$\frac{6}{x}$=kx+4,
kx2+4x-6=0,
∵直线y=kx+4与双曲线y=$\frac{6}{x}$有唯一公共点,
∴方程kx2+4x-6=0有唯一一个解,
即△=42-4k•(-6)=0,
解得:k=-$\frac{2}{3}$;
(2)当x1>x2>0时,y1<y2;
当x2<x1<0时,y1<y2;
当x2<0<x1时,y1>y2.
点评 本题考查了一次函数和反比例函数的交点问题,根的判别式,函数图象上点的坐标特征,函数的图象和性质的应用,能理解两函数有唯一公共点的意义是解此题的关键,数形结合思想的应用.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com