【题目】在边长为1的正方形网格中标有A、B、C、D、E、F六个格点,顶点在格点上的三角形叫做格点三角形,如格点三角形△ABC.
(1)△ABC的面积为 ;
(2)△ABC的形状为 ;
(3)根据图中标示的各点(A、B、C、D、E、F)位置,与△ABC全等的格点三角形是 .
【答案】(1)2;(2)直角三角形;(3)△DBC,△DAB,△DAC.
【解析】
(1)用三角形ABC所在的长方形的面积减去四周的三个三角形的面积即可得;
(2)利用勾股定理分别求出三角形ABC的边长,再利用勾股定理的逆定理进行判断即可;
(3)已知△ABC的各边长,根据网格的特征以及全等三角形的性质可得.
(1)△ABC的面积为:2×3﹣﹣﹣=2,
故答案为:2;
(2)由勾股定理得:AC==2,BC==,AB==,
所以AC2+BC2=AB2,
即∠ACB=90°,
即△ABC是直角三角形,
故答案为:直角三角形;
(3)与△ABC全等的格点三角形是△DBC,△DAB,△DAC,
故答案为:△DBC,△DAB,△DAC.
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AB∥CD,∠1=∠2,DB=DC.
(1)求证:△ABD≌△EDC;
(2)若∠A=135°,∠BDC=30°,求∠BCE的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点D在△ABC的边AB上,点E为AC的中点,过点C作CF∥AB交DE的延长线于点F,连接AF.
(1)求证:CD=AF;
(2)若∠AED=2∠ECD,求证:四边形ADCF是矩形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图1,在梯形中,∥,,,点,,分别在边,,上,==.
(1)求证:四边形是平行四边形;
(2)当时,求证:四边形是矩形;
(3)在(2)的条件下,如图2,过点作于点,当,,这三条线段的长度满足怎样的数量关系时,可以判断四边形是正方形?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=x2+x+2与x轴相交于点A、B,交y轴于点C,抛物线的对称轴交x轴于点N,交线段AC于点M.点F是线段MA上的动点,连接NF,过点N作NG⊥NF交△ABC的边于点G.
(1)求证:△ABC是直角三角形;
(2)当点G在边BC上时,连接GF,∠NGF的度数变化吗?若变化,请说明理由;若不变,请求出∠NGF的正切值;
(3)设点F的横坐标为n,点G的纵坐标为m,在整个运动过程中,直接写出m与n的函数关系式,并注明自变量n的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图 1,在平面直角坐标系中,直线l1:yx5与x轴,y轴分别交于A.B两点.直线l2:y4xb与l1交于点 D(-3,8)且与x轴,y轴分别交于C、E.
(1)求出点A坐标,直线l2的解析式;
(2)如图2,点P为线段AD上一点(不含端点),连接CP,一动点Q从C出发,沿线段CP 以每秒1个单位的速度运动到点P,再沿着线段PD以每秒个单位的速度运动到点D停止,求点Q在整个运动过程中所用最少时间与点P的坐标;
(3)如图3,平面直角坐标系中有一点G(m,2),使得SCEGSCEB,求点G的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.设先发车辆行驶的时间为xh,两车之间的距离为ykm,图中的折线表示y与x之间的函数关系,根据图象解决以下问题:
(1)慢车的速度为_____km/h,快车的速度为_____km/h;
(2)解释图中点C的实际意义并求出点C的坐标;
(3)求当x为多少时,两车之间的距离为500km.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一次函数 y=-2x+4,完成下列问题:
(1)在所给直角坐标系中画出此函数的图象;
(2)根据图象回答:当 x 时,y>2.
(3)求出函数图象与坐标轴围成的三角形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,已知点D在线段AB的反向延长线上,过AC的中点F作线段GE交∠DAC的平分线于E,交BC于G,且AE∥BC.
(1)求证:△ABC是等腰三角形;
(2)若AE=8,AB=10,GC=2BG,求△ABC的周长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com