精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,AC=3,BC=4,若AC,BC边上的中线BE,AD垂直相交于点O,则AB=________.

【答案】

【解析】

利用三角形中线定义得到BD=2,AE=,且可判定点O为△ABC的重心,所以AO=2OD,OB=2OE,利用勾股定理得到BO2+OD2=4,OE2+AO2=,等量代换得到BO2+ AO2=4,BO2+AO2=,把两式相加得到BO2+AO2=5,然后再利用勾股定理可计算出AB的长.

解:∵AD、BEAC,BC边上的中线,
∴BD=BC=2,AE=AC=,点O为△ABC的重心,
∴AO=2OD,OB=2OE,
∵BE⊥AD,
∴BO2+OD2=BD2=4,OE2+AO2=AE2=
∴BO2+AO2=4,BO2+AO2=
BO2+AO2=
∴BO2+AO2=5,
∴AB==
故答案为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在我校刚刚结束的缤纷体育节上,初三年级参加了60m迎面接力比赛.假设每名同学在跑步过程中是匀速的,且交接棒的时间忽略不计,如图是AB两班的路程差y(米)与比赛开始至A班先结束第二棒的时间x(秒)之间的函数图象.则B班第二棒的速度为_____/秒.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD,F是对角线AC上的一点,过点D作DE∥AC,且DE=CF,连接AE、DE、EF.

(1)求证:△ADE≌△BCF;

(2)若∠BAF+∠AED=180°,求证:四边形ABFE为菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】12分)如图,矩形ABCD中,AB=8,AD=6,点E、F分别在边CD、AB上.

(1)若DE=BF,求证:四边形AFCE是平行四边形;

(2)若四边形AFCE是菱形,求菱形AFCE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,水坝的横截面是梯形ABCDABC=37°,坝顶DC=3m,背水坡AD的坡度i(即tanDAB)为1:0.5,坝底AB=14m

(1)求坝高;

(2)如图2,为了提高堤坝的防洪抗洪能力,防汛指挥部决定在背水坡将坝顶和坝底间时拓宽加固,使得AE=2DFEFBF,求DF的长.(参考数据:sin37°≈,cos37°≈,tan37°≈

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(2017浙江省宁波市)在一次课题学习中,老师让同学们合作编题,某学习小组受赵爽弦图的启发,编写了下面这道题,请你来解一解:

如图,将矩形ABCD的四边BACBDCAD分别延长至EFGH,使得AE=CGBF=DH,连接EFFGGHHE

(1)求证:四边形EFGH为平行四边形;

(2)若矩形ABCD是边长为1的正方形,且∠FEB=45°,tanAEH=2,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,边长为1的正方形ABCD中,点E是对角线BD上的一点,且BEBC,点PEC上,PMBDMPNBCN,则PM+PN_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC的顶点坐标分别为A13),B42),C21).

1作出与ABC关于x轴对称的A1B1C1

2)以原点O为位似中心,在原点的另一个侧画出A2B2C2.使=,并写出A2B2C2的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在矩形ABCD中,AB=10,BC=12,E为DC的中点,连接BE,作AFBE,垂足为F

(1)求证:BECABF

(2)求AF的长.

查看答案和解析>>

同步练习册答案