精英家教网 > 初中数学 > 题目详情

【题目】如图,平面直角坐标系中,直线AB:y=﹣x+by轴于A(0,1),交x轴于点B.过点E(1,0)作x轴的垂线EFAB于点D,P是直线EF上一动点,且在点D的上方,设P(1,n).

(1)直线AB的表达式为__________________;

(2)①求△ABP的面积(用含n的代数式表示);

②当SABP=2时,求点P的坐标;

③在②的条件下,以PB为边在第一象限作等腰直角三角形BPC,请直接写出点C的坐标.

【答案】(1)y=﹣x+1;(2)SABP=P(1,2);(3,4)或(5,2)或(3,2).

【解析】

(1)把A的坐标代入直线AB的解析式即可求得b的值,由此即可求得直线AB的解析式;(2)①过点AAM⊥PD,垂足为M,求得AM的长,再求得△BPD和△PAB的面积,二者的和即为△ABP的面积;②S△ABP=2时,代入①中所得的代数式,求得n值,即可求得点P的坐标;③分P是直角顶点且BP=PC、B是直角顶点且BP=BC 、C是直角顶点且CP=CB三种情况求点C的坐标即可

(1)∵y=-x+b经过A(0,1),

∴b=1,

∴直线AB的解析式是y=-x+1;

故答案为:y=-x+1;

(2)①过点AAM⊥PD,垂足为M,则有AM=1,

∵x=1时,y=-x+1=,P在点D的上方,

∴PD=n-,S△APD=PDAM=×1×(n )=n

由点B(3,0),可知点B到直线x=1的距离为2,即△BDP的边PD上的高长为2,

∴S△BPD=PD×2=n-

∴S△PAB=S△APD+S△BPD=n-+n-=n-1;

②当S△ABP=2时,n-1=2,

解得n=2,

∴点P(1,2).

③∵E(1,0),

∴PE=BE=2,

∴∠EPB=∠EBP=45°.

1种情况,如图1,∠CPB=90°,BP=PC,

过点CCN⊥直线x=1于点N.

∵∠CPB=90°,∠EPB=45°,

∴∠NPC=∠EPB=45°,

在△CNP与△BEP中,

∴△CNP≌△BEP,

∴PN=NC=EB=PE=2,

∴NE=NP+PE=2+2=4,

∴C(3,4).

2种情况,如图2,∠PBC=90°,BP=BC,

过点CCF⊥x轴于点F.

∵∠PBC=90°,∠EBP=45°,

∴∠CBF=∠PBE=45°,

在△CBP与△PBE中,

∴△CBF≌△PBE.

∴BF=CF=PE=EB=2,

∴OF=OB+BF=3+2=5,

∴C(5,2).

3种情况,如图3,∠PCB=90°,CP=CB,

∴∠CPB=∠CBP=45°,

∵∠EPB=∠EBP=45°,

∴∠PCB=∠CBE=∠EPC=90°,

∴四边形EBCP为矩形,

∵CP=CB,

∴四边形EBCP为正方形,

∴PC=CB=PE=EB=2,

∴C(3,2).

∴以PB为边在第一象限作等腰直角三角形BPC,点C的坐标是(3,4)或(5,2)或(3,2).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知两个全等直角三角形的直角顶点及一条直角边重合,将△ABC绕点C按顺时针方向旋转到△A′CB′的位置,其中A′C交直线AD于点E,A′B′分别交直线AD,AC于点F,G.则旋转后的图中,全等三角形共有(  )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠B=90°,∠ACB=30°,其直角边分别与坐标轴垂直,已知顶点的坐标为A(,0),C(0,1).

(1)如果A关于BC对称的点是D,则点D的坐标为   

(2)过点B作直线m∥AC,交CD连线于E,求△BCE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知线段AB=(为常数),点C为直线AB上一点,点PQ分别在线段BCAC上,且满足CQ=2AQCP=2BP.

(1)如图,当点C恰好在线段AB中点时,则PQ=_______(用含的代数式表示);

(2)若点C为直线AB上任一点,则PQ长度是否为常数?若是,请求出这个常数;若不是,请说明理由;

(3)若点C在点A左侧,同时点P在线段AB上(不与端点重合),请判断2AP+CQ-2PQ1的大小关系,并说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形OABC的顶点O在坐标原点,顶点A的坐标为(4,3)
(1)顶点C的坐标为(),顶点B的坐标为();
(2)现有动点P、Q分别从C、A同时出发,点P沿线段CB向终点B运动,速度为每秒1个单位,点Q沿折线A→O→C向终点C运动,速度为每秒k个单位,当运动时间为2秒时,以P、Q、C为顶点的三角形是等腰三角形,求此时k的值.
(3)若正方形OABC以每秒 个单位的速度沿射线AO下滑,直至顶点C落到x轴上时停止下滑.设正方形OABC在x轴下方部分的面积为S,求S关于滑行时间t的函数关系式,并写出相应自变量t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰直角△ABC中,AB=AC=8,以AB为直径的半圆O交斜边BC于D,则阴影部分面积为(结果保留π)(
A.16
B.24﹣4π
C.32﹣4π
D.32﹣8π

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB= ,BC= ,点E在对角线BD上,且BE=1.8,连接AE并延长交DC于F,则 等于(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AB,CD相交于点O,过点O作两条射线OM,ON,且∠AOM=∠CON=90°.

(1)若OC平分∠AOM,求∠AOD的度数;

(2)若∠1=∠BOC,求∠AOC和∠MOD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在⊙O的内接四边形ACDB中,AB为直径,AC:BC=1:2,点D为弧AB的中点,BE⊥CD垂足为E.
(1)求∠BCE的度数;
(2)求证:D为CE的中点;
(3)连接OE交BC于点F,若AB= ,求OE的长度.

查看答案和解析>>

同步练习册答案