【题目】(1)问题发现
如图①,△ABC和△AED都是等腰直角三角形,∠BAC=∠EAD=90°,点B在线段AE上,点C在线段AD上,请直接写出线段BE与线段CD的数量关系: ;
(2)操作探究
如图②,将图①中的△ABC绕点A顺时针旋转,旋转角为α(0°α360°),请判断并证明线段BE与线段CD的数量关系;
(3)解决问题
将图①中的△ABC绕点A顺时针旋转,旋转角为α(0°α360°),若DE=2AC,在旋转的过程中,当以A、B、C、D四点为顶点的四边形是平行四边形时,请直接写出旋转角α的度数 .
【答案】(1);(2),证明见解析;(3)45°,225°或315°
【解析】
(1)根据等腰直角三角形的性质可得AB=AC,AE=AD,再根据等量关系可得线段BE与线段CD的关系;
(2)根据等腰直角三角形的性质可得AB=AC,AE=AD,根据旋转的性质可得∠BAE=∠CAD,根据SAS可证△BAE≌△CAD,根据全等三角形的性质即可求解;
(3)根据平行四边形的性质可得∠ABC=∠ADC=45°,再根据等腰直角三角形的性质即可求解.
解:(1)∵△ABC和△AED都是等腰直角三角形,∠BAC=∠EAD=90°,
∴AB=AC,AE=AD,
∴AEAB=ADAC,
∴BE=CD,
故答案为:BE=CD;
(2)∵△ABC和△AED都是等腰直角三角形,∠BAC=∠EAD=90°,
∴AB=AC,AE=AD,
由旋转的性质得,∠BAE=∠CAD,
在△BAE与△CAD中,
∴△BAE≌△CAD(SAS)
∴BE=CD;
(3)如图,
∵以A、B、C、D四点为顶点的四边形是平行四边形,△ABC和△AED都是等腰直角三角形,
∴∠ABC=∠ADC=45°,
∵ED=2AC,
∴AC=CD,
∴①当C点旋转于C1位置时∠CAD=45°,
②当C点旋转于C2位置时∠CAD=360°90°45°=225°,
③当C点旋转于C3位置时∠CAD=360°45°=315°,
∴角α的度数是45°或225°或315°,
故答案为:45°或225°或315.
科目:初中数学 来源: 题型:
【题目】越野自行车是中学生喜爱的交通工具,市场巨大,竟争也激烈.某品牌经销商经营的型车去年销售总额为万元,今年每辆售价比去年降低元,若卖出的数量相同,销售总额将比去年减少.
(1)设今年型车每辆销售价为元,求的值;
(2)该品牌经销商计划新进一批型车和新款型车共辆,且型车的进货数量不超过型车数量的两倍,请问应如何安排两种型号车的进货数量,才能使这批售出后获利最多?
、两种型号车今年的进货和销售价格表
型车 | 型车 | |
进货价 | 元/辆 | 元/辆 |
销售价 | 元/辆 | 元/辆 |
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知在矩形ABCD中,AB=4,AD=3,⊙C与对角线BD相切.
(1)如图1,求⊙C的半径;
(2)如图2,点P是⊙C上一个动点,连接AP,AC,AP交⊙C于点Q,若sin∠PAC=,求∠CPA的度数和弧PQ的长;
(3)如图,对角线AC与⊙C交于点E,点P是⊙C上一个动点,设点P到直线AC的距离为d,当0<d≤时,请直接写出∠PCE度数的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】顶点为D的抛物线y=﹣x2+bx+c交x轴于A、B(3,0),交y轴于点C,直线y=﹣x+m经过点C,交x轴于E(4,0).
(1)求出抛物线的解析式;
(2)如图1,点M为线段BD上不与B、D重合的一个动点,过点M作x轴的垂线,垂足为N,设点M的横坐标为x,四边形OCMN的面积为S,求S与x之间的函数关系式,并求S的最大值;
(3)点P为x轴的正半轴上一个动点,过P作x轴的垂线,交直线y=﹣x+m于G,交抛物线于H,连接CH,将△CGH沿CH翻折,若点G的对应点F恰好落在y轴上时,请直接写出点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“校园音乐之声“结束后,王老师整理了所有参赛选手的比赛成绩(单位:分),绘制成如下频数直方图和扇形统计图:
(1)求本次比赛参赛选手总人数,并补全频数直方图;
(2)求扇形统计图中扇形E的圆心角度数;
(3)成绩在E区域的选手中,男生比女生多一人,从中随机选取两人,求恰好选中两名女生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,根据测试成绩(成绩都不低于50分)绘制出如图所示的部分频数分布直方图.
请根据图中信息完成下列各题.
(1)将频数分布直方图补充完整人数;
(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少;
(3)现将从包括小明和小强在内的4名成绩优异的同学中随机选取两名参加市级比赛,求小明与小强同时被选中的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形中,,点G在边上,连接,作于点E,于点F,连接、,设,,.
(1)求证:;
(2)求证:;
(3)若点G从点B沿边运动至点C停止,求点E,F所经过的路径与边围成的图形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=x2+bx+c经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC∥x轴,点P时直线AC下方抛物线上的动点.
(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;
(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com