【题目】(1)如图1:在△ABC中,AB=AC,AD⊥BC,DE⊥AB于点E,DF⊥AC于点F.证明:DE=DF.
(2)如图2,在△ABC中,AB=AC,AD⊥BC,DE和DF分别平分∠ADB和∠ADC,求证:DE=DF.
【答案】(1)证明见解析;(2)证明见解析.
【解析】试题分析:(1)在△ABC中,AB=AC,AD⊥BC,根据等腰三角形三线合一的性质可得∠BAD=∠CAD,又因DE⊥AB,DF⊥AC,根据角平分线的性质定理即可证得DE=DF;(2)在△ABC中,AB=AC,AD⊥BC,根据等腰三角形三线合一的性质可得∠BAD=∠CAD,∠ABD=∠CDA=90°,又因DE平分∠ADB,DF平分和∠ADC,可得∠ADE=∠ADF=45°,利用ASA证得△AED≌△AFD,根据全等三角形等的性质即可得结论.
试题解析:
(1)证明:∵AB=AC,AD⊥BC,
∴∠BAD=∠CAD,
∵DE⊥AB,DF⊥AC
∴DE=DF;
(2)证明:∵AB=AC,AD⊥BC
∴∠BAD=∠CAD,
∵DE平分∠ADB,DF平分和∠ADC,
∴∠ADE=∠ADF=45°,
在△AED和△AFD中,
,
∴△AED≌△AFD(ASA),
∴DE=DF.
科目:初中数学 来源: 题型:
【题目】(本题满分8分)码头工人以每天40吨的速度往一艘轮船上装卸货物,装载完毕恰好用8天时间。
(1)轮船到达目的地后开始卸货,卸货速度为v(单位:吨/天),卸货时间为t(单位:天),求出v与t的函数关系式;
(2)由于遇到紧急情况,船上的货物必须在不超过5天内卸载完毕,那么平均每天至少要卸多少吨货物?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,科技小组准备用材料围建一个面积为60m2的矩形科技园ABCD,其中一边AB靠墙,墙长为12m,设AD的长为m,DC的长为m.
(1)求与之间的函数关系式;
(2)若围成矩形科技园ABCD的三边材料总长不超过26m,材料AD和DC的长都是整米数,求出满足条件的所有围建方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是( )
A. ∠A=∠C B. AD=CB C. BE=DF D. AD∥BC
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com