精英家教网 > 初中数学 > 题目详情

【题目】已知,如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O于点E,AE与BC交于点H,点D为OE的延长线上一点,且∠ODB=∠AEC.

(1)求证:BD是⊙O的切线;

(2)求证:CE2=EHEA;

(3)若⊙O的半径为5,sinA=,求BH的长.

【答案】(1)证明见解析;

(2)证明见解析;

(3)BH=

析】

试题分析:(1)由圆周角定理和已知条件证出∠ODB=∠ABC,再证出∠ABC+∠DBF=90°,即∠OBD=90°,即可得出BD是⊙O的切线;

(2)连接AC,由垂径定理得出,得出∠CAE=∠ECB,再由公共角∠CEA=∠HEC,证明△CEH∽△AEC,得出对应边成比例,即可得出结论;

(3)连接BE,由圆周角定理得出∠AEB=90°,由三角函数求出BE,再根据勾股定理求出EA,得出BE=CE=6,由(2)的结论求出EH,然后根据勾股定理求出BH即可.

试题解析:(1)∵∠ODB=∠AEC,∠AEC=∠ABC,∴∠ODB=∠ABC,

∵OF⊥BC,∴∠BFD=90°,∴∠ODB+∠DBF=90°,∴∠ABC+∠DBF=90°,

即∠OBD=90°,∴BD⊥OB,∴BD是⊙O的切线;

(2)连接AC,如图1所示:∵OF⊥BC,∴

∴∠CAE=∠ECB,∵∠CEA=∠HEC,∴△CEH∽△AEC,

∴CE2=EHEA;

(3)连接BE,如图2所示:

∵AB是⊙O的直径,

∴∠AEB=90°,

∵⊙O的半径为5,sin∠BAE=

∴AB=10,BE=ABsin∠BAE=10×=6,

∴EA==8,

,∴BE=CE=6,∵CE2=EHEA,

∴EH=

在Rt△BEH中,BH===

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】小王剪了两张直角三角形纸片,进行了如下的操作:

(1)如图1,将RtABC沿某条直线折叠,使斜边的两个端点AB重合,折痕为DE,若AC=6cm,BC=8cm,求CD的长.

(2)如图2,小王拿出另一张RtABC纸片,将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,若AC=6cm,BC=8cm,求CD的长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一组数据:14,7,11,7,16,下列说法不正确的是(  )

A. 平均数是11 B. 中位数是11 C. 众数是7 D. 极差是7

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以△ABC的三边ABBCCA分别为边,在BC的同侧作等边△ABD、等边△BCE、等边△CAE,求证:四边形ADEF是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2019年是新中国成立70周年,是决胜全面建成小康社会第一个百年奋斗目标的关键之年,脱贫攻坚成效明显.按照现行农村贫困标准计算,2019年末农村贫困人口比上年末减少1109万人,将1109万人用科学记数法表示为________人.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】手机微信推出了抢红包游戏,它有多种玩法,其中一种为“拼手气红包”,用户设定好总金额以及红包个数后,可以生成不等金额的红包.现有一用户发了三个“拼手气红包”,总金额为3元,随机被甲、乙、丙三人抢到.
(1)判断下列事件中,哪些是确定事件,哪些是不确定事件?
①丙抢到金额为1元的红包;
②乙抢到金额为4元的红包
③甲、乙两人抢到的红包金额之和一定比丙抢到的红包金额多;
(2)记金额最多、居中、最少的红包分别为A,B,C.
①求出甲抢到红包A的概率;
②若甲没抢到红包A,则乙能抢到红包A的概率又是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在甲处劳动的有27人,在乙处劳动的有19人.现在另调20人去支援,使在甲处的人数为在乙处的人数的2倍,应调往甲、乙两处各多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若等式﹣3□2=﹣1成立,则内的运算符号为(  )

A. + B. C. × D. ÷

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,C为线段AE上一动点(不与点AE重合),在AE同侧分别作等边△ABC和等边△CDEADBE交于点OADBC交于点PBECD交于点Q,连接PQ.以下五个结论:

①AD=BE②PQ∥AE③AP=BQ④DE=DP⑤∠AOB=60°

其中正确的结论的个数是( )

A. 2B. 3C. 4D. 5

查看答案和解析>>

同步练习册答案