【题目】给定一个十进制下的自然数,对于每个数位上的数,求出它除以的余数,再把每一个余数按照原来的数位顺序排列,得到一个新的数,定义这个新数为原数的“模二数”,记为.如.对于“模二数”的加法规定如下:将两数末位对齐,从右往左依次将相应数位.上的数分别相加,规定:与相加得;与相加得与相加得,并向左边一位进.如的“模二数”相加的运算过程如下图所示.
根据以上材料,解决下列问题:
(1)的值为______ ,的值为_
(2)如果两个自然数的和的“模二数”与它们的“模二数”的和相等,则称这两个数“模二相加不变”.如,因为,所以,即与满足“模二相加不变”.
①判断这三个数中哪些与“模二相加不变”,并说明理由;
②与“模二相加不变”的两位数有______个
【答案】(1)1011,1101;(2)①12,65,97,见解析,②38
【解析】
(1) 根据“模二数”的定义计算即可;
(2) ①根据“模二数”和模二相加不变”的定义,分别计算和12+23,65+23,97+23的值,即可得出答案
②设两位数的十位数字为a,个位数字为b,根据a、b的奇偶性和“模二数”和模二相加不变”的定义进行讨论,从而得出与“模二相加不变”的两位数的个数
解: (1) ,
故答案为:
①,
,
与满足“模二相加不变”.
,,
,
与不满足“模二相加不变”.
,
,
,
与满足“模二相加不变”
②当此两位数小于77时,设两位数的十位数字为a,个位数字为b,;
当a为偶数,b为偶数时,
∴
∴与满足“模二相加不变”有12个(28、48、68不符合)
当a为偶数,b为奇数时,
∴
∴与不满足“模二相加不变”.但27、47、67、29、49、69符合共6个
当a为奇数,b为奇数时,
∴
∴与不满足“模二相加不变”.但17、37、57、19、39、59也不符合
当a为奇数,b为偶数时,
∴
∴与满足“模二相加不变”有16个,(18、38、58不符合)
当此两位数大于等于77时,符合共有4个
综上所述共有12+6+16+4=38
故答案为:38
科目:初中数学 来源: 题型:
【题目】按下列要求画图(不写画法,保留作图痕迹)
(1)画∠AOB=90°;
(2)在∠AOB外画∠BOC=60°;
(3)分别画∠AOB,∠AOC的角平分线OD,OE
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图1,点是直线上一点,,,射线平分.
图1 图2
(1)求的度数;
(2)将图1中按顺时针方向转至图2所示的位置,仍然平分,,则___________.(用含有的代数式表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,AM、BN分别与⊙O相切于点A、B,CD交AM、BN于点D、C,DO平分∠ADC.
(1)求证:CD是⊙O的切线;
(2)设AD=4,AB=x (x > 0),BC=y (y > 0). 求y关于x的函数解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,点D、E、F分别在边AB、BC、CA上,且DE∥CA,DF∥BA.
下列四种说法:①四边形AEDF是平行四边形;②如果∠BAC=90°,那么四边形AEDF是矩形;③如果AD平分∠BAC,那么四边形AEDF是菱形;④如果AD⊥BC且AB=AC,那么四边形AEDF是菱形.
其中,正确的有( ) 个.
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图, 已知抛物线经过A(-2,0)、B(4,0)、C(0,4)三点.
(1)求此抛物线的解析式;
(2)此抛物线有最大值还是最小值?请求出其最大或最小值;
(3)若点D(2,m)在此抛物线上,在y轴的正半轴上是否存在点P,使得△BDP是等腰三角形?若存在,请求出所有符合条件的P点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx﹣4a经过A(﹣1,0)、C(0,4)两点,与x轴交于另一点B.
(1)求抛物线的解析式;
(2)求抛物线的顶点坐标
(3)已知点D(m,m+1)在第一象限的抛物线上,求点D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连结BD,BE.以下四个结论:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④∠ACE=∠DBC其中结论正确的个数有( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com