精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABC中,AB=4,AC=6,ABC和ACB的平分线交于点E,过点E作MNBC分别交AB、AC于M、N,则AMN的周长为(  )

A. 10 B. 6 C. 4 D. 不确定

【答案】A

【解析】

利用平行线的性质及角平分线的定义可得出∠AMN=2MBE,结合三角形外角的性质即可得出∠MBE=MEB,即MB=ME,同理可得出NC=NE,再利用三角形的周长公式即可求出AMN的周长.

MNBC,

∴∠AMN=ABC.

BE平分∠ABC,

∴∠ABC=2MBE,

∴∠AMN=2MBE.

∵∠AMN=MBE+MEB,

∴∠MBE=MEB,

MB=ME.

同理,NC=NE,

CAMN=AM+ME+EN+AN=AB+AC=10.

故选A.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】中国式过马路,是网友对部分中国人集体闯红灯现象的一种调侃,即“凑够一撮人就可以走了,和红绿灯无关”针对这种现象某媒体记者在多个路口采访闯红灯的行人,得出形成这种现象的四个基本原因,①红绿灯设置不科学,交通管理混乱占1%;②侥幸心态;③执法力度不够占9%;④从众心理,该记者将这次调查情况整理并绘制了如下尚不完整的统计图,请根据相关信息,解答下列问题.
(1)该记者本次一共调査了名行人;
(2)求图1中④所在扇形的圆心角,并补全图2;
(3)在本次调查中,记者随机采访其中的一名行人,求他属于第②种情况的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校要求八年级同学在课外活动中,必须在五项球类(篮球、足球、排球、羽毛球、乒乓球)活动中任选一项(只能选一项)参加训练,为了了解八年级学生参加球类活动的整体情况,现以八年级2班作为样本,对该班学生参加球类活动的情况进行统计,并绘制了如图所示的不完整统计表和扇形统计图:

八年级2班参加球类活动人数统计表

项目

篮球

足球

乒乓球

排球

羽毛球

人数

a

6

5

7

6


根据图中提供的信息,解答下列问题:
(1)a= , b=
(2)该校八年级学生共有600人,则该年级参加足球活动的人数约 人;
(3)该班参加乒乓球活动的5位同学中,有3位男同学(A,B,C)和2位女同学(D,E),现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一副三角板按如图放置,下列结论:①∠1=3;②若BCAD,则∠4=3;③若∠2=15°,必有∠4=2D;④若∠2=30°,则有ACDE. 其中正确的有_____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知CDDADAAB,∠1=2. 试说明DFAE. 请你完成下列填空,把解答过程补充完整.

解:∵CDDADAAB

∴∠CDA=90°,∠DAB=90°( ).

∴∠CDA=DAB(等量代换).

又∠1=2

从而∠CDA-1=DAB-________(等式的性质).

即∠3=_______.

DFAE( ).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,过点A作AE⊥BC于点E,AF⊥DC于点F,AE=AF.
(1)求证:四边形ABCD是菱形;
(2)若∠EAF=60°,CF=2,求AF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解答题
定义:把四边形的某些边向两方延长,其他各边有不在延长所得直线的同一旁,这样的四边形叫做凹四边形.如图1,四边形ABCD为凹四边形.

(1)性质探究:请完成凹四边形一个性质的证明.
已知:如图2,四边形ABCD是凹四边形.
求证:∠BCD=∠B+∠A+∠D.

(2)性质应用:
如图3,在凹四边形ABCD中,∠BAD的角平分线与∠BCD的角平分线交于点E,若∠ADC=140°,∠AEC=102°,则∠B=°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知:在△ABC中,∠ACB=90°,CD为高,且CD、CE三等分∠ACB.

(1)求∠B的度数.

(2)求证:CE是AB边上的中线,且

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长是16,点E在边AB上,AE=3,动点F在边BC上,且不与点B、C重合,将△EBF沿EF折叠,得到△EB′F.

(1)当∠BEF=45°时,求证:CF=AE;
(2)当B′D=B′C时,求BF的长;
(3)求△CB′F周长的最小值.

查看答案和解析>>

同步练习册答案