精英家教网 > 初中数学 > 题目详情

【题目】一副三角板按如图放置,下列结论:①∠1=3;②若BCAD,则∠4=3;③若∠2=15°,必有∠4=2D;④若∠2=30°,则有ACDE. 其中正确的有_____.

【答案】①③④

【解析】

根据余角的概念和同角的余角相等判断①;根据平行线的性质判断②;根据三角形的外角性质计算判断③;平行线的判定定理判断④.

解:

由题意可知∠CAB=∠EAD=90°,∠B=∠C=45°,∠D=30°,∠E=60°,

∵∠1+∠2=∠2+∠3=90°,

∴∠1=∠3,故正确;

BC∥AD,

∠3与∠4既不是同位角,也不是内错角,无法证明∠4=∠3,故错误;

∠2=15°,

∴∠EFB=∠2+∠E=15°+60°=75°,

∴∠4=180°﹣∠EFB﹣∠B=180°﹣75°﹣45°=60°,

∵∠D=30°,

∴∠4=2∠D,故正确;

若∠2=30°,则∠1=∠3=90°﹣30°=60°,

∴∠CAD=∠1+∠2+∠3=150°,

∵∠CAD+∠D=150°+30°=180°,

∴AC∥DE(同旁内角互补,两直线平行).正确.

故答案为:①③④.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】20筐白菜,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:

与标准质量的差值(单位:千克)

1

4

2

3

2

8

(1)20筐白菜中,最重的一筐比最轻的一筐重______千克;

(2)与标准重量比较,20筐白菜总计超过或不足多少千克?

3)若白菜每千克售价元,则出售这20筐白菜可卖多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为提高市民的环保意识,倡导节能减排,绿色出行,某市计划在城区投放一批共享单车这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.

(1)今年年初,共享单车试点投放在某市中心城区正式启动.投放A,B两种款型的单车共100辆,总价值36800元.试问本次试点投放的A型车与B型车各多少辆?

(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=kx+b的图象与反比例函数y= (x>0)的图象交于A(2,﹣1),B( ,n)两点,直线y=2与y轴交于点C.
(1)求一次函数与反比例函数的解析式;
(2)求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知如图,射线CBOA,C=OAB=100°,E、FCB上,且满足∠FOB=AOB,OE平分∠COF。

(1)求∠EOB的度数;

(2)若平行移动AB,那么∠OBC∶∠OFC的值是否随之变化?若变化,找出变化规律;若不变,求出这个比值;

(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=OBA?若存在,求出其度数;若不存在,说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解不等式组: 并写出它的所有整数解.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=4,AC=6,ABC和ACB的平分线交于点E,过点E作MNBC分别交AB、AC于M、N,则AMN的周长为(  )

A. 10 B. 6 C. 4 D. 不确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,对“隔离直线”给出如下定义:
点P(x,m)是图形G1上的任意一点,点Q(x,n)是图形G2上的任意一点,若存在直线l:kx+b(k≠0)满足m≤kx+b且n≥kx+b,则称直线l:y=kx+b(k≠0)是图形G1与G2的“隔离直线”.
如图1,直线l:y=﹣x﹣4是函数y= (x<0)的图象与正方形OABC的一条“隔离直线”.

(1)在直线y1=﹣2x,y2=3x+1,y3=﹣x+3中,是图1函数y= (x<0)的图象与正方形OABC的“隔离直线”的为
请你再写出一条符合题意的不同的“隔离直线”的表达式:
(2)如图2,第一象限的等腰直角三角形EDF的两腰分别与坐标轴平行,直角顶点D的坐标是( ,1),⊙O的半径为2.是否存在△EDF与⊙O的“隔离直线”?若存在,求出此“隔离直线”的表达式;若不存在,请说明理由;

(3)正方形A1B1C1D1的一边在y轴上,其它三边都在y轴的右侧,点M(1,t)是此正方形的中心.若存在直线y=2x+b是函数y=x2﹣2x﹣3(0≤x≤4)的图象与正方形A1B1C1D1的“隔离直线”,请直接写出t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在下列条件中,不能作为判断ABD≌△BAC的条件是( )

A. D=C,BAD=ABC B. BAD=ABC,ABD=BAC

C. BD=AC,BAD=ABC D. AD=BC,BD=AC

查看答案和解析>>

同步练习册答案