精英家教网 > 初中数学 > 题目详情
9.如图,在△ABC中,∠ACB=90°,AC=2$\sqrt{5}$,BC=4$\sqrt{5}$,D、E分别是边AB、BC的中点,点P从点C出发,沿线段CD方向以每秒1个单位长度的速度运动,当点P与点D不重合时,以EP、ED为邻边作?EDFP,设点P的运动时间为t(秒).
(1)求AB长.
(2)当∠DPF=∠PFD时,求t的值.
(3)当点P在线段CD上时,设?EDFP与△ABC重叠部分图形的面积为y(平方单位),求y与t之间的函数关系式.
(4)连结AF,当△AFD的面积与△PDE的面积相等时,直接写出t的值.

分析 (1)在RT△ABC中利用勾股定理即可解决问题.
(2)如图1中,当∠DPF=∠PFD时,可以证明PE∥AB,PC=PD,由此即可解决问题.
(3)分两种情形①当0≤t≤$\frac{5}{2}$时,如图2中,作PM⊥DE存在为M,此时重叠部分面积就是平行四边形PEDF的面积,②当$\frac{5}{2}$<t<5时,如图3中,此时y=S△PHD+S△PDE
(4)两种情形①t=O时,△ADF与△PDE面积相等.②如图4中,当A、P、E共线时△ADF与△PDE面积相等,由DE∥AC得$\frac{DE}{AC}$=$\frac{PD}{PC}$,求出PC即可.

解答 解:(1)在△ABC中,∵∠ACB=90°,AC=2$\sqrt{5}$,BC=4$\sqrt{5}$,
∴AB=$\sqrt{A{C}^{2}+B{C}^{2}}$=$\sqrt{(2\sqrt{5})^{2}+(4\sqrt{5})^{2}}$=10.
(2)如图1中,∵四边形PEDF是平行四边形,
∴PF∥DE,PE∥DF,
∴∠DPF=∠PDE,
∵∠ACB=90°,AD=DB,
∴CD=DB=DA=5,∵CE=EB,
∴DE⊥BC,∠CDE=∠EDB
∵∠DPF=∠PFD,
∴∠PED=∠BDE,
∴PE∥DB,∵CE=EB,
∴PC=PD=$\frac{5}{2}$,
∴t=$\frac{5}{2}$.
(3)①当0≤t≤$\frac{5}{2}$时,如图2中,作PM⊥DE存在为M,
∵PM∥CE,
∴$\frac{PM}{CE}$=$\frac{DP}{DC}$,
∴$\frac{PM}{2\sqrt{5}}$=$\frac{5-t}{5}$,
∴PM=$\frac{2\sqrt{5}}{5}$(5-t),
∴Y=DE•PM=$\sqrt{5}$•$\frac{2\sqrt{5}}{5}$(5-t)=-2t+10.
②当$\frac{5}{2}$<t<5时,如图3中,∵PH∥AC,
∴$\frac{PH}{AC}$=$\frac{DP}{CD}$,
∴$\frac{PH}{2\sqrt{5}}$=$\frac{5-t}{5}$,
∴PH=$\frac{2\sqrt{5}}{5}$(5-t),
∴y=S△PHD+S△PDE=$\frac{1}{2}$•PH•PM+$\frac{1}{2}$(-2t+10)=$\frac{2}{5}$t2-5t+15,
综上所述:y=$\left\{\begin{array}{l}{-2t+10}&{(0≤t≤\frac{5}{2})}\\{\frac{2}{5}{t}^{2}-5t+15}&{(\frac{5}{2}<t<5)}\end{array}\right.$.
(4)①t=O时,△ADF与△PDE面积相等.
②如图4中,当A、P、E共线时,
∵AE∥DF,△ADF与△PDF同底等高,
∴S△ADF=S△PDF
∵四边形PFDE是平行四边形,
∴S△PED=S△PDF
∴S△ADF=S△PDE
∵DE∥AC,
∴$\frac{DE}{AC}$=$\frac{PD}{PC}$=$\frac{1}{2}$,
∴PC=$\frac{2}{3}$CD=$\frac{10}{3}$,
∴t=$\frac{10}{3}$,
∴t=0或$\frac{10}{3}$时,△ADF与△PDE面积相等.

点评 本题考查四边形综合题,平行四边形的性质、平行线分线段成比例定理,三角形中位线定理等知识,解题的关键是学会分类讨论,正确画出图形,掌握同底等高的三角形面积相等,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.如图,在?ABCD中,AB⊥AC,AB=1,BC=$\sqrt{5}$,对角线AC,BD交于O点,将直线AC绕点O顺时针旋转,分别交于BC,AD于点E,F.
(1)证明:当旋转角为90°时,四边形ABEF是平行四边形;
(2)试说明在旋转过程中,线段AF与EC总保持相等;
(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不可能,请说明理由;如果可能,说明理由并求出此时AC绕点O顺时针旋转的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,AB切⊙O于B,BC⊥AO于C,AO交⊙O于D,BO=2,AO=8,P是弧BD上任一点,设k=$\frac{PA}{PC}$,问k的值是否随点P的移动而变化?证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图:平行四边形ABCD中,(AB≠AD),AE,CF分别平分∠BAD和∠BCD
①求证:AE=CF;
②若E是BC中点,求证:BC=2AB.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.使不等式x+7>4x+9成立的最大整数为-1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.不等式$\frac{x-3}{2}$≥x-2的非负整数解之和是1.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.如果a>b,那么下列不等式中一定成立的是(  )
A.a2>b2B.1-a>1-bC.1+a>1-bD.1+a>b-1

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.如图,抛物线y=x2-2x-3与x轴交于A、B两点,过B的直线交抛物线于E,且tan∠EBA=$\frac{4}{3}$,有一只蚂蚁从A出发,先以1单位/s的速度爬到线段BE上的点D处,再以1.25单位/s的速度沿着DE爬到E点处觅食,则蚂蚁从A到E的最短时间是$\frac{64}{9}$s.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.计算:2$\sqrt{3}$-$\frac{2}{3}$$\sqrt{3}$+$\frac{5}{6}$$\sqrt{3}$.

查看答案和解析>>

同步练习册答案