【题目】某工地有72m2的墙面需要粉刷.若安排4名一级技工粉刷一天,结果还剩12m2墙面未能刷完;同样时间内安排6名二级技工去粉刷,则刚好全部刷完.己知每名一级技工比二级技工一天多粉刷3m2墙面.设每一名一级技工一天粉刷墙面xm2.
(1)每名二级技工一天粉刷墙面_____m2(用含x的式子表示);
(2)求每名一级技工、二级技工一天分别能粉刷多少m2墙面?
(3)每名一级技工一天的施工费是300元,每名二级技工一天的施工费是200元.若另一工地有540m2的墙面需要粉刷,要求一天完工且施工总费用不超过10600元,则至少需要_____名二级技工(直接写出结果).
【答案】(1)(x-3);(2)15m2、12m2;(3)5.
【解析】
(1)根据每一名一级技工一天粉刷墙面xm2,每名一级技工比二级技工一天多粉刷3m2墙面,即可写出每名二级技工一天粉刷墙面为(x-3)m2;(2)根据题意可列出方程=,即可求解;(3)设至少需要y名二级技工,则需要名一级技工,根据题意可列出不等式,即可进行求解.
(1) 根据每一名一级技工一天粉刷墙面xm2,每名一级技工比二级技工一天多粉刷3m2墙面,即可写出每名二级技工一天粉刷墙面为(x-3)m2;
(2)依题意列方程:=;
解得x=15,经检验x=15是原方程的解,
即每名一级技工和二级技工一天分别能粉刷15m2、12m2墙面;
(3) 设至少需要y名二级技工,则需要名一级技工,
依题意得
解得y≥5,
故至少需要5名二级技工.
科目:初中数学 来源: 题型:
【题目】平面直角坐标系xOy中,有点P(a,b),实数a,b,m满足以下两个等式:
2a﹣3m+1=0,3b﹣2m﹣16=0
(1)当a=1时,点P到x轴的距离为 ;
(2)若点P落在x轴上,点P平移后对应点为P′(a+15,b+4),求点P和P′的坐标;
(3)当a≤4<b时,求m的最小整数值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,DH⊥BC于H交BE于G.下列结论:①BD=CD;②AD+CF=BD;③CE=BF;④AE=BG.其中正确的个数是( )
A. 1个B. 2个C. 3个D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(习题回顾)(1)如下左图,在中,平分平分,则_________.
(探究延伸)在中,平分、平分、平分相交于点,过点作,交于点.
(2)如上中间图,求证:;
(3)如上右图,外角的平分线与的延长线交于点.
①判断与的位置关系,并说明理由;
②若,试说明:.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(3分)以下四种沿AB折叠的方法中,不一定能判定纸带两条边线a,b互相平行的是( )
A. 如图1,展开后测得∠1=∠2
B. 如图2,展开后测得∠1=∠2且∠3=∠4
C. 如图3,测得∠1=∠2
D. 如图4,展开后再沿CD折叠,两条折痕的交点为O,测得OA=OB,OC=OD
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】珠江流域某江段江水流向经过B、C、D三点拐弯后与原来相同,如图,若∠ABC=120°,∠BCD=80°,则∠CDE=__________度.
(第22题)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知一次函数y=kx+2的图象与x轴,y轴分别交于点A,B,与正比例函数y=x交于点C,已知点C的横坐标为2,下列结论:①关于x的方程kx+2=0的解为x=3;②对于直线y=kx+2,当x<3时,y>0;③对于直线y=kx+2,当x>0时,y>2;④方程组的解为,其中正确的是( )
A. ①②③B. ①②④C. ①③④D. ②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知反比例函数y= 的图象在第二、四象限,一次函数为y=kx+b(b>0),直线x=1与x轴交于点B,与直线y=kx+b交于点A,直线x=3与x轴交于点C,与直线y=kx+b交于点D.点A,D都在第一象限,直线y=kx+b与x轴交于点E,与y轴交于点F
(1)当 = 且△OFE的面积等于 时,求这个一次函数的解析式;
(2)在(1)的条件下,根据函数图象,试求不等式 >kx+b的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC的三个顶点坐标为A(-2.3)、B(-6,0)、C(-1,0)
(1) 将△ABC绕坐标原点O旋转180°,画出图形,并写出点A的对应点A′ 的坐标________;
(2)将△ABC绕坐标原点O逆时针旋转90°,
直接写出点A的对应点A″的坐标___________;
(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标___________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com