分析 先把两等式相乘和相加可得ab=240,ab(a+b)=8160,则可计算出a+b=34,再根据完全平方公式变形得到$\sqrt{{a}^{2}+{b}^{2}}$=$\sqrt{(a+b)^{2}-2ab}$,然后利用整体代入的方法计算.
解答 解:∵a2b=2400,ab2=5760,
∴a3b3=2400×57600=2403,a2b+ab2=2400+5760,
∴ab=240,ab(a+b)=8160,
∴a+b=$\frac{8160}{240}$=34,
∴$\sqrt{{a}^{2}+{b}^{2}}$=$\sqrt{(a+b)^{2}-2ab}$=$\sqrt{3{4}^{2}-2×240}$=$\sqrt{676}$=26.
点评 本题考查了分式的混合运算:要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com