【题目】如图,二次函数y=-x2+2x+m的图象与x轴的一个交点为A(3,0),另一个交点为B,且与y轴交于点C.若该二次函数图象上有一点D(x,y),使S△ABD=S△ABC,则D点的坐标为____________________.
【答案】(2,3)或(1-,-3)或(1+,-3)
【解析】
利用待定系数法求出函数的解析式,然后令y=0求出B点和C点的坐标,再根据三角形的面积和函数的对称性求出D点的坐标.
∵二次函数y=-x2+2x+m的图象与x轴的一个交点为A(3,0)
∴-9+2×3+m=0
解得m=3
∴函数的解析式为y=-x2+2x+3,
令y=-x2+2x+3=0,求得x=3或x=-1,
则B点为(-1,0),C点为(0,3),函数的对称轴为x=1
①由S△ABD=S△ABC可知D点可以是C点的对称点,可得D点坐标为(2,3);
②设D点的坐标为(x,y),则由S△ABD=S△ABC==,解得y=3或y=-3,由此可得-x2+2x+3=-3,解得x=1±,可得D为(1-,-3)或(1+,-3).
故答案为:(2,3)或(1-,-3)或(1+,-3).
科目:初中数学 来源: 题型:
【题目】深圳市某校艺术节期间,开展了“好声音”歌唱比赛,在初赛中,学生处对初赛成绩做了统计分析,绘制成如下频数、频率分布表和频数分布直方图(如图),请你根据图中提供的信息,解答下列问题:
分组 | 频数 | 频率 |
74.5≤x<79.5 | 2 | 0.04 |
79.5≤x<84.5 | a | 0.16 |
84.5≤x<89.5 | 20 | 0.40 |
89.5≤x<94.5 | 16 | 0.32 |
94.5≤x<100.5 | 4 | b |
合计 | 50 | 1 |
(1)频数、频率分布表中a= ,b= ;
(2)补全频数分布直方图;
(3)初赛成绩在94.5≤x<100.5分的四位同学恰好是七年级、八年级各一位,九年级两位,学生处打算从中随机挑选两位同学谈一下决赛前的训练,则所选两位同学恰好都是九年级学生的概率为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=x+3与坐标轴分别交于A,B两点,抛物线y=ax2+bx-3a经过点A,B,顶点为C,连接CB并延长交x轴于点E,点D与点B关于抛物线的对称轴MN对称.
(1)求抛物线的解析式及顶点C的坐标;
(2)求证:四边形ABCD是直角梯形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,四边形ABCD为正方形,点E,F分别在AB与BC上,且∠EDF=45°,易证:AE+CF=EF(不用证明).
(1)如图②,在四边形ABCD中,∠ADC=120°,DA=DC,∠DAB=∠BCD=90°,点E,F分别在AB与BC上,且∠EDF=60°.猜想AE,CF与EF之间的数量关系,并证明你的猜想;
(2)如图③,在四边形ABCD中,∠ADC=2α,DA=DC,∠DAB与∠BCD互补,点E,F分别在AB与BC上,且∠EDF=α,请直接写出AE,CF与EF之间的数量关系,不用证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(12分)如图所示是隧道的截面由抛物线和长方形构成,长方形的长是12 m,宽是4 m.按照图中所示的直角坐标系,抛物线可以用y=x2+bx+c表示,且抛物线上的点C到OB的水平距离为3 m,到地面OA的距离为m.
(1)求抛物线的函数关系式,并计算出拱顶D到地面OA的距离;
(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向车道,那么这辆货车能否安全通过?
(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),△ABC中,AB=AC,∠B、∠C的平分线相交于点O,过点O作EF∥BC交AB、AC于E、F。
①EF与BE、CF间有怎样的数量关系?∠A与∠BOC怎样的数量关系?说明理由。
②若AB≠AC,其他条件不变,如图(2),图中还有几个等腰三角形吗?如果有,第①问中EF与BE、CF间的关系还存在吗?∠A与∠BOC的数量关系还存在吗?
③若△ABC中,AB≠AC,∠B的平分线与三角形外角∠ACG的平分线CO交于O,过O点作OE∥BC交AB于E,交AC于F。如图(3),EF与BE、CF间的关系如何?∠A与∠BOC的数量关系?说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】长方形ABCD中,AB=6,AD=8,点E为边AD上一点,将△ABE沿BE折叠后得到△BEF.
(1)如图1,若点E为AD的中点,延长BF交边CD于点G.
①求证:DG=FG.
②求FG的长度.
(2)如图2,若点E为边AD的一动点,连接FD,△DEF能否为直角三角形?若能,求出AE的值.若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在等边△ABC中,E为BC边上一点,G为BC延长线上一点,过点E作∠AEM=60°,交∠ACG的平分线于点M.
(1)如图1,当点E在BC边的中点位置时,求证:AE=EM;
(2)如图2,当点E在BC边的任意位置时,(1)中的结论是否成立?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com