【题目】如图①,四边形ABCD为正方形,点E,F分别在AB与BC上,且∠EDF=45°,易证:AE+CF=EF(不用证明).
(1)如图②,在四边形ABCD中,∠ADC=120°,DA=DC,∠DAB=∠BCD=90°,点E,F分别在AB与BC上,且∠EDF=60°.猜想AE,CF与EF之间的数量关系,并证明你的猜想;
(2)如图③,在四边形ABCD中,∠ADC=2α,DA=DC,∠DAB与∠BCD互补,点E,F分别在AB与BC上,且∠EDF=α,请直接写出AE,CF与EF之间的数量关系,不用证明.
【答案】(1)AE+CF=EF,证明见解析;(2),理由见解析.
【解析】
(1)由题干中截长补短的提示,再结合第(1)问的证明结论,在第二问可以用截长补短的方法来构造全等,从而达到证明结果.
(2)同理作辅助线,同理进行即可,直接写出猜想,并证明.
(1)图2猜想:AE+CF=EF,
证明:在BC的延长线上截取CA'=AE,连接A'D,
∵∠DAB=∠BCD=90°,
∴∠DAB=∠DCA'=90°,
又∵AD=CD,AE=A'C,
∴△DAE≌△DCA'(SAS),
∴ED=A'D,∠ADE=∠A'DC,
∵∠ADC=120°,
∴∠EDA'=120°,
∵∠EDF=60°,
∴∠EDF=∠A'DF=60°,
又DF=DF,
∴△EDF≌△A'DF(SAS),
则EF=A'F=FC+CA'=FC+AE;
(2)如图3,AE+CF=EF,
证明:在BC的延长线上截取CA'=AE,连接A'D,
∵∠DAB与∠BCD互补,∠BCD+∠DCA'=180°
∴∠DAB=∠DCA',
又∵AD=CD,AE=A'C,
∴△DAE≌△DCA'(SAS),
∴ED=A'D,∠ADE=∠A'DC,
∵∠ADC=2α,
∴∠EDA'=2α,
∵∠EDF=α,
∴∠EDF=∠A'DF=α
又DF=DF,
∴△EDF≌△A'DF(SAS),
则EF=A'F=FC+CA'=FC+AE.
科目:初中数学 来源: 题型:
【题目】有一个面积为1的正方形,经过一次“生长”后,在它的左右肩上生出了2个小正方形(如图①),其中,3个正方形围成的三角形是直角三角形.再经过一次“生长”后,又生出了4个小正方形(如图②),如果按此规律继续“生长”下去,它将变得“枝繁叶茂”,在“生长”了2019次后形成的图形中所有正方形的面积和是( )
A.2018B.2019C.2020D.2021
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是⊙O的内接四边形,AB=CD.
(1)如图(1),求证:AD∥BC;
(2)如图(2),点F是AC的中点,弦DG∥AB,交BC于点E,交AC于点M,求证:AE=2DF;
(3)在(2)的条件下,若DG平分∠ADC,GE=5,tan∠ADF=4,求⊙O的半径。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数的部分图象如图,图象过点(﹣1,0),对称轴为直线,下列结论:①;②;③;④当时, 随的增大而增大.其中正确的结论有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线l:y=﹣x+4,在直线l上取点B1,过B1分别向x轴,y轴作垂线,交x轴于A1,交y轴于C1,使四边形OA1B1C1为正方形;在直线l上取点B2,过B2分别向x轴,A1B1作垂线,交x轴于A2,交A1B1于C2,使四边形A1A2B2C2为正方形;按此方法在直线l上顺次取点B3,B4,…,Bn,依次作正方形A2A3B3C3,A3A4B4C4,…,An﹣1AnBnCn,则A3的坐标为___,B5的坐标为___.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,抛物线与x轴正半轴交于A、B两点(A点在B点左边),且AB=4.
(1)求k值;
(2)该抛物线与直线交于C、D两点,求S△ACD;
(3)该抛物线上是否存在不同于A点的点P,使S△PCD=S△ACD?若存在,求出P点坐标.
(4)若该抛物线上有点P,使S△PCD=tS△ACD,抛物线上满足条件的P点有2个,3个,4个时,分别直接写出t的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=-x2+2x+m的图象与x轴的一个交点为A(3,0),另一个交点为B,且与y轴交于点C.若该二次函数图象上有一点D(x,y),使S△ABD=S△ABC,则D点的坐标为____________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列解题过程:已知、、为△ABC的三边,且满足,
试判断△ABC的形状.
解:∵ ①
∴ ②
∴ ③
∴△ABC为直角三角形.
问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号________;
(2)错误的原因是____________________________;
(3)本题的正确结论是_________________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示:是等腰直角三角形,,直角顶点在轴上,一锐角顶点在轴上.
(1)如图1所示,若的坐标是,点的坐标是,求,点的坐标.
(2)如图2,若轴恰好平分,与轴交于点,过点作轴于,问与有怎样的数量关系,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com