【题目】已知:如图,等边△ABC中,D、E分别在BC、AC边上运动,且始终保持BD=CE,点D、E始终不与等边△ABC的顶点重合.连接AD、BE,AD、BE交于点F.
(1)写出在运动过程中始终全等的三角形,井选择其中一组证明;
(2)运动过程中,∠BFD的度数是否会改变?如果改变,请说明理由;如果不变,求出∠BFD的度数,再说明理由.
(3)直接写出运动过程中,AE、AB、BD三条线段长度之间的等量关系.
【答案】(1)见解析;(2)不变,60°;(3)AE+BD=AB.
【解析】
(1)由等边三角形的性质得出AB=BC=AC,∠ABC=BCA=BAC=60°,由BD=CE,得出CD=AE,由SAS即可证得△ACD≌BAE;由SAS即可证得△ABD≌△BCE;
(2)由△ABD≌△BCE得出∠BAD=∠CBE,由三角形内角和定理得出∠AFB+∠BAD+∠ABF=180°,推出∠AFB+∠CBE+∠ABF=180°,由∠CBE+∠ABF=∠ABC=60°,则∠AFB=120°,即可得出∠BFD=60°不变;
(3)由AB=BC=AC,BD=CE,CD=AE,即可得出结果.
(1)△ACD≌BAE,△ABD≌△BCE;理由如下:
∵△ABC是等边三角形,
∴AB=BC=AC,∠ABC=BCA=BAC=60°,
∵BD=CE,
∴CD=AE,
在△ACD和BAE中,
,
∴△ACD≌BAE(SAS);
在△ABD和△BCE中,
,
∴△ABD≌△BCE(SAS);
(2)∠BFD的度数不变;理由如下:
∵△ABD≌△BCE,
∴∠BAD=∠CBE,
∵∠AFB+∠BAD+∠ABF=180°,
∴∠AFB+∠CBE+∠ABF=180°,
∵∠CBE+∠ABF=∠ABC=60°,
∴∠AFB=120°,
∵∠BFD+∠AFB=180°,
∴∠BFD=60°
∴∠BFD的度数不变;
(3)∵AB=BC=AC,BD=CE,CD=AE,
∴AE+BD=AE+CE=AC=AB,
∴AE+BD=AB.
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是( )
A. B. 4 C. D. 5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某社区组织“献爱心手拉手”捐款活动.对社区部分捐款户数进行调查和分组统计后,将数据整理成如图所示的统计图和统计表(图中信息不完整).已知A、B两组捐款户数的比为1:5.请结合以上信息解答下列问题.捐款户数分组统计表
(1)本次调查了 户;
(2)补全“捐款户数分组统计表”和“捐款户数分组统计图1”;
(3)若该社区有2000户住户,请根据以上信息,估计全社区捐款不少于150元的户数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一次数学课上,王老师出示一道题:解方程.小马立即举手并在黑板上写出了解方程过程,具体如下:
解:,
去括号,得:.………………①
移项,得:.…………………②
合并同类项,得:.……………………③
系数化为1,得:.………………………④
(1)请你写出小马解方程过程中哪步错了,并简要说明错误原因;
(2)请你正确解方程:.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1,已知CE⊥AB,BF⊥AC,垂足分別为E、F,CE与BF相交于点D,且AD平分∠BAC.求证:CE=BF.
(2)如图2,AD是△ABC的角平分线,AE=AC,EF∥BC交AC于F点,求证:EC平分∠DEF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数轴上有两个动点M,N,如果点M始终在点N的左侧,我们称作点M是点N的“追赶点”.如图,数轴上有2个点A,B,它们表示的数分别为-3,1,已知点M是点N的“追赶点”,且M,N表示的数分别为m,n.
(1)由题意得:点A是点B的“追赶点”,AB=1-(-3)=4(AB表示线段AB的长,以下相同);类似的,MN=____________.
(2)在A,M,N三点中,若其中一个点是另外两个点所构成线段的中点,请用含m的代数式来表示n.
(3)若AM=BN,MN=BM,求m和n值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知在平面直角坐标系中有 A(-2,1), B(3, 1),C(2, 3)三点,请回答下列问题:
(1)在坐标系内描出点A, B, C的位置.
(2)画出关于直线x=-1对称的,并写出各点坐标.
(3)在y轴上是否存在点P,使以A,B, P三点为顶点的三角形的面积为10?若存在,请直接写出点P的坐标:若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某剧院的观众席的座位为扇形,且按下列分式设置:
排数(x) | 1 | 2 | 3 | 4 | … |
座位数(y) | 50 | 53 | 56 | 59 | … |
(1)按照上表所示的规律,当x每增加1时,y如何变化?
(2)写出座位数y与排数x之间的关系式;
(3)按照上表所示的规律,某一排可能有90个座位吗?说说你的理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com