【题目】(1)如图1,已知CE⊥AB,BF⊥AC,垂足分別为E、F,CE与BF相交于点D,且AD平分∠BAC.求证:CE=BF.
(2)如图2,AD是△ABC的角平分线,AE=AC,EF∥BC交AC于F点,求证:EC平分∠DEF.
【答案】(1)证明见解析;(2)证明见解析
【解析】
(1)先证DE=DF,再证明△BDE≌△CDF,即可得出结论;
(2)根据等腰三角形的三线合一性质得出AD垂直平分CE,根据线段垂直平分线的性质得出CD=CE,得出角相等,再由平行线证出内错角相等,即可得出结论.
(1)证明:∵AD平分∠BAC,CE⊥AB,BF⊥AC,
∴DE=DF,∠DEB=∠DFC=90°,
在△BDE和△CDF中,
,
∴△BDE≌△CDF(ASA),
∴BD=CD,
∴BD+DF=CD+DE,
∴CE=BF;
(2)证明:∵AD是△ABC的角平分线,AE=AC,
∴AD垂直平分CE,
∴CD=CE,
∴∠DEC=∠DCE,
∵EF∥BC,
∴∠FEC=∠DCE,
∴∠FEC=∠DEC,
∴EC平分∠DEF.
科目:初中数学 来源: 题型:
【题目】小美周末来到公园,发现在公园一角有一种“守株待兔”游戏.游戏设计者提供了一只兔子和一个有A、B、C、D、E五个出入口的兔笼,而且笼内的兔子从每个出入口走出兔笼的机会是均等的.规定:
①玩家只能将小兔从A、B两个出入口放入;
②如果小兔进入笼子后选择从开始进入的出入口离开,则可获得一只价值5元小兔玩具,否则应付费3元.
(1)问小美得到小兔玩具的机会有多大?
(2)假设有100人次玩此游戏,估计游戏设计者可赚多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,是边上的一点,是的中点,过点作的平行线交的延长线于,且,连结.
(1)求证:是的中点;
(2)如果,试猜测四边形的形状,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠BAC=45°,若BD=2,CD=3,AD⊥BC于D,将△ABD沿AB所在的直线折叠,使点D落在点E处;将△ACD沿AC所在的直线折叠,使点D落在点F处,分别延长EB、FC使其交于点M.
(1)判断四边形AEMF的形状,并给予证明.
(2)设AD=x,利用勾股定理,建立关于x的方程模型,求四边形AEMF的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,等边△ABC中,D、E分别在BC、AC边上运动,且始终保持BD=CE,点D、E始终不与等边△ABC的顶点重合.连接AD、BE,AD、BE交于点F.
(1)写出在运动过程中始终全等的三角形,井选择其中一组证明;
(2)运动过程中,∠BFD的度数是否会改变?如果改变,请说明理由;如果不变,求出∠BFD的度数,再说明理由.
(3)直接写出运动过程中,AE、AB、BD三条线段长度之间的等量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知线段和线段.
(1)按要求作图(保留作围痕迹,不写作法);
延长线段至点,使,反向延长线段至点,使;
(2)如果,分别是线段,的中点,且, ,求线段的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com