【题目】已知线段和线段.
(1)按要求作图(保留作围痕迹,不写作法);
延长线段至点,使,反向延长线段至点,使;
(2)如果,分别是线段,的中点,且, ,求线段的长.
【答案】(1)见解析;(2)
【解析】
(1)延长AB,以B为圆心,以AB长度为半径画弧,与AB延长线交点即为C,延长BA,以A为圆心,以a为半径画弧,交BA延长线于点E,再以E为圆心,以a为半径画弧,交BA延长线于点D即可.
(2)根据题意和(1)中结论,可得AD、AB、BC的长度,再根据,分别是线段,的中点,求出DM和DN的长,即可得MN的长.
解:(1)如图,即为所作图形:
(2)如图,∵a=2,AB=3,
∴AD=4,AB=BC=3,
∵,分别是线段,的中点,
∴DN=CD,DM=AD+AM,
∵CD=AD+AB+BC=10,DM=AD+AB=5.5,
∴MN=DM-DN=5.5-CD=0.5=.
科目:初中数学 来源: 题型:
【题目】已知:点A(4,0),点B是y轴正半轴上一点,如图1,以AB为直角边作等腰直角三角形ABC.
(1)当点B坐标为(0,1)时,求点C的坐标;
(2)如图2,以OB为直角边作等腰直角△OBD,点D在第一象限,连接CD交y轴于点E.在点B运动的过程中,BE的长是否发生变化?若不变,求出BE的长;若变化,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠B=45°,BC=5,高AD=4,矩形EFPQ的一边QP在BC边上,E、F分别在AB、AC上,AD交EF于点H.
(1)当矩形EFPQ为正方形时,求正方形的边长;
(2)设EF=x,当x为何值时,矩形EFPQ的面积最大?并求出最大面积;
(3)当矩形EFPQ的面积最大时,该矩形EFPQ以每秒1个单位的速度沿射线BC匀速向右运动(当矩形的顶点Q到达C点时停止运动),设运动时间为t秒,矩形EFPQ与△ABC重叠部分的面积为S,求S与t的函数关系式,并写出t的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1,已知CE⊥AB,BF⊥AC,垂足分別为E、F,CE与BF相交于点D,且AD平分∠BAC.求证:CE=BF.
(2)如图2,AD是△ABC的角平分线,AE=AC,EF∥BC交AC于F点,求证:EC平分∠DEF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:在平面直角坐标系中,一个图形先向右平移a个单位,再绕原点按顺时针方向旋转θ角度,这样的图形运动叫作图形的γ(a,θ)变换.
如图,等边△ABC的边长为1,点A在第一象限,点B与原点O重合,点C在x轴的正半轴上.△A1B1C1就是△ABC经γ(1,180°)变换后所得的图形.
若△ABC经γ(1,180°)变换后得△A1B1C1,△A1B1C1经γ(2,180°)变换后得△A2B2C2,△A2B2C2经γ(3,180°)变换后得△A3B3C3,依此类推……
△An﹣1Bn﹣1Cn﹣1经γ(n,180°)变换后得△AnBnCn,则点A1的坐标是__,点A2018的坐标是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠ACB=90°,AC=BC,直线,MN经过点C,且AD⊥MN于点D,BE⊥MN于点E。
(1)当直线MN绕点C旋转到如图1的位置时,求证:DE=AD+BE;
(2)当直线MN绕点C旋转到如图2的位置时,求证:DE=AD-BE;
(3)当直线MN绕点C旋转到如图3的位置时,线段DE、AD、BE之间又有什么样的数量关系?请你写出这个数量关系,并证明
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,CD⊥AB于点D,点E在CD上,下列四个条件:①AD=ED;②∠A=∠BED;③∠C=∠B;④AC=EB,将其中两个作为条件,不能判定△ADC≌△EDB的是
A.①②B.①④C.②③D.②④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com