精英家教网 > 初中数学 > 题目详情

【题目】某生产商存有1200千克产品,生产成本为150/千克,售价为400元千克.因市场变化,准备低价一次性处理掉部分存货,所得货款全部用来生产产品,产品售价为200/千克.经市场调研发现,产品存货的处理价格(元/千克)与处理数量(千克)满足一次函数关系(),且得到表中数据.

(千克)

(元/千克)

200

350

400

300

1)请求出处理价格(元千克)与处理数量(千克)之间的函数关系;

2)若产品生产成本为100元千克,产品处理数量为多少千克时,生产产品数量最多,最多是多少?

3)由于改进技术,产品的生产成本降低到了/千克,设全部产品全部售出,所得总利润为(元),若时,满足的增大而减小,求的取值范围

【答案】1;(2)当时,生产B产品数量最多,最多为1600千克;(3.

【解析】

(1)设出函数表达式,再将数据代入求解即可.

(2)先求出生产数量的表达式,再根据二次函数顶点式求出最值即可.

(3)先求出总利润的表达式,再根据二次函数的对称轴公式求出对称轴,根据增减性即可求出.

解:(1)设

根据题意,得:

解得:

2)生产产品的数量

∴当时,生产B产品数量最多,最多为1600千克;

3

∴对称轴

,若时,的增大而减小,

,即

的取值范围是

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为奖励优秀学生,某校准备购买一批文具袋和圆规作为奖品,已知购买1个文具袋和2个圆规需21元,购买2个文具袋和3个圆规需39元.

1)求文具袋和圆规的单价.

2)学校准备购买文具袋20个,圆规100个,文具店给出两种优惠方案:

方案一:每购买一个文具袋赠送1个圆规.

方案二:购买10个以上圆规时,超出10个的部分按原价的八折优惠,文具袋不打折.学校选择哪种方案更划算?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,一次函数的图象与反比例函数的图象交于

1)求反比例函数和一次函数的解析式;

2)在x轴上存在一点C,使为等腰三角形,求此时点C的坐标;

3)根据图象直接写出使一次函数的值大于反比例函数的值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商业集团新建一小车停车场,经测算,此停车场每天需固定支出的费用(设施维修费、车辆管理人员工资等)为800元.为制定合理的收费标准,该集团对一段时间每天小车停放辆次与每辆次小车的收费情况进行了调查,发现每辆次小车的停车费不超过5元时,每天来此处停放的小车可达1440辆次;若停车费超过5元,则每超过1元,每天来此处停放的小车就减少120辆次.为便于结算,规定每辆次小车的停车费x(元)只取整数,用y(元)表示此停车场的日净收入,且要求日净收入不低于2512元.(日净收入=每天共收取的停车费﹣每天的固定支出)

1)当x5时,写出yx之间的关系式,并说明每辆小车的停车费最少不低于多少元;

2)当x5时,写出yx之间的函数关系式(不必写出x的取值范围);

3)该集团要求此停车场既要吸引客户,使每天小车停放的辆次较多,又要有较大的日净收入.按此要求,每辆次小车的停车费应定为多少元?此时日净收入是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校准备组织师生共60人,从甲地乘动车前往乙地参加夏令营活动,动车票价格如表所示:(教师按成人票价购买,学生按学生票价购买).

运行区间

成人票价(元/张)

学生票价(元/张)

出发站

终点站

一等座

二等座

二等座

甲地

乙地

26

22

16

若师生均购买二等座票,则共需1020元.

1)求参加活动的教师和学生各有多少人?

2)由于部分教师需提早前往做准备工作,这部分教师均购买一等座票,后续前往的教师和学生均购买二等座票.设提早前往的教师有人,购买一、二等座票全部费用为元.

①求关于的函数关系式;

②若购买一、二等座票全部费用不多于1030元,则提早前往的教师最多只能有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某超市销售一种成本为每台20元的台灯,规定销售单价不低于成本价,又不高于每台32元.销售中平均每月销售量y(台)与销售单价x(元)的关系可以近似地看做一次函数,如下表所示:

x

22

24

26

28

y

90

80

70

60

(1)请直接写出y与x之间的函数关系式;

(2)为了实现平均每月375元的台灯销售利润,这种台灯的售价应定为多少?这时每月应购进台灯多少个?

(3)设超市每月台灯销售利润为ω(元),求ω与x之间的函数关系式,当x取何值时,ω的值最大?最大值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市总预算亿元用三年时间建成一条轨道交通线.轨道交通线由线路搬迁安置、辅助配套三项程组成.2015年开始,市政府在每年年初分别对三项工程进行不同数额的投资.

2015年年初,对线路设、搬迁安置的投资分别是辅助配套投资的2倍、4.随后两年,线路设投资每年都增加亿元,预计线路敷设三年总投资为54亿元时会顺利如期完工;搬迁安投资从2016年初开始遂年按同一百分数递减,依此规律 2017年年初只需投资5亿元,即可顺利如期完工;辅助配套工程在2016年年初的投资在前一年基础上的增长率线路2016年投资增长率的1.5倍,2017年年初的投资比该项工程前两年投资的总和还多4亿元,若这样,辅助配套工程也可以如期完工.测算,这三年的线路设、辅助配套工程的总投资资金之比达到3: 2.

(1)三年用于辅助配套的投资将达到多少亿元?

(2)市政府2015年年初对三项工程的总投资是多少亿元?

(3)求搬迁安置投资逐年递减的百分数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某体育器材专卖柜经销AB两种器材,A种器材每件进价350元,售价480元;B种器材每件进价200元,售价300元.

1)该专卖柜计划用8000元去购进AB两种器材若干件.

①若购进A种器材x件,B种器材y件,所获利润w元,请写出wx之间满足的函数关系式;

②怎样购进才能使专卖柜经销这两种器材所获利润最大(其中A种器材不少于7件)?

2)在“五·一”期间,该专卖柜对AB两种器材进行如下优惠促销活动:

一次性购物总金额

优惠措施

不超过3000

不优惠

超过3000元不超过4000

售价打八折

超过4000

售价打七折

促销活动期间:甲学校去该专卖柜购买A种器材付款2688元;乙学校去该专卖柜购买B种器材付款2100元,求丙学校决定一次性购买甲学校和乙学校购买的同样多的器材需付款多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一把直尺,的直角三角板和光盘如图摆放,角与直尺交点,,则光盘的直径是( )

A. 3 B. C. D.

查看答案和解析>>

同步练习册答案