精英家教网 > 初中数学 > 题目详情

【题目】计算:(﹣1)2017+tan45°+ +|3﹣π|.

【答案】解:原式=﹣1+1+3+π﹣3

=π.


【解析】因2017为奇数,所以(﹣1)2017=-1,又因特殊角的三角函数值tan45°=1, 根据立方根的性质=3,另任何一个数的绝对值均为正数,则|3﹣π|=π﹣3,所以原式化简后代入数值即可求解。
【考点精析】根据题目的已知条件,利用特殊角的三角函数值和实数的运算的相关知识可以得到问题的答案,需要掌握分母口诀:30度、45度、60度的正弦值、余弦值的分母都是2,30度、45度、60度的正切值、余切值的分母都是3,分子口诀:“123,321,三九二十七”;先算乘方、开方,再算乘除,最后算加减,如果有括号,先算括号里面的,若没有括号,在同一级运算中,要从左到右进行运算.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】用棋子按照一定规律摆放图形

按照这种方式继续摆放下去,若摆放一个图形用去21枚棋子,则是摆放的第______个图形;摆放前nn为正整数)个图形共需用______枚棋子.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市某中学为了了解孩子们对《中国诗词大会》,《挑战不可能》,《最强大脑》,《超级演说家》,《地理中国》五种电视节目的喜爱程度,随机在七、八、九年级抽取了部分学生进行调查(每人只能选择一种喜爱的电视节目),并将获得的数据进行整理,绘制出以下两幅不完整的统计图,请根据两幅统计图中的信息回答下列问题:

(1)本次调查中共抽取了名学生.
(2)补全条形统计图.
(3)在扇形统计图中,喜爱《地理中国》节目的人数所在的扇形的圆心角是度.
(4)若该学校有2000人,请你估计该学校喜欢《最强大脑》节目的学生人数是多少人?.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形AOCB的顶点A、C分别位于x轴和y轴的正半轴上,线段OA、OC的长度满足方程|x﹣15|+ =0(OA>OC),直线y=kx+b分别与x轴、y轴交于M、N两点,将△BCN沿直线BN折叠,点C恰好落在直线MN上的点D处,且tan∠CBD=

(1)求点B的坐标;
(2)求直线BN的解析式;
(3)将直线BN以每秒1个单位长度的速度沿y轴向下平移,求直线BN扫过矩形AOCB的面积S关于运动的时间t(0<t≤13)的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数y= (m≠0)的图象交于A、B两点,与x轴交于C点,点A的坐标为(n,6),点C的坐标为(﹣2,0),且tan∠ACO=2.

(1)求该反比例函数和一次函数的解析式;
(2)求点B的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图示,AB∥CD,且点E在射线ABCD之间,请说明∠AEC=∠A+∠C的理由.

(2)现在如图b示,仍有AB∥CD,但点EABCD的上方,请尝试探索∠1,∠2,∠E三者的数量关系. ②请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料:

小明遇到这样一个问题:

1)如图1ACBD,点E为直线AC上方一点,连接CEDE,猜想∠C、∠D、∠E的数量关系,并证明.小明发现,可以过点EMNAC来解决问题,如图2,请你完成解答:

2)用学过的知识或参考小明的方法,解决下面的问题:

如图3ABCDP是平面内一点,连接APCP,使APBDAPC=100°BMCM分别平分∠ABD,∠DCP交于点M,求∠M的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=﹣ +bx+c与y轴交于点C,与x轴的两个交点分别为A(﹣4,0),B(1,0).

(1)求抛物线的解析式;
(2)已知点P在抛物线上,连接PC,PB,若△PBC是以BC为直角边的直角三角形,求点P的坐标;
(3)已知点E在x轴上,点F在抛物线上,是否存在以A,C,E,F为顶点的四边形是平行四边形?若存在,请直接写出点E的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】分解因式x2-4y2-2x+4y细心观察这个式子就会发现前两项符合平方差公式后两项可提取公因式前后两部分分别分解因式后会产生公因式然后提取公因式就可以完成整个式子的分解因式过程为x2-4y2-2x+4y=(x+2y)(x-2y)-2(x-2y)=(x-2y)(x+2y-2).这种分解因式的方法叫分组分解法利用这种方法解决下列问题

(1)分解因式a2-4ab2+4;

(2)ABC三边abc满足a2abacbc=0,试判断ABC的形状

查看答案和解析>>

同步练习册答案