【题目】认真阅读下面的材料,完成有关问题.
材料:在学习绝对值时,老师教过我们绝对值的几何含义,一般地,点A、B在数轴上分别表示有理数a、b,那么A、B之间的距离可表示为|a﹣b|.
问题(1):点A、B、C在数轴上分别表示有理数x、﹣2、1,那么A到B的距离与A到C的距离之和可表示为 (用含绝对值的式子表示).
问题(2):利用数轴探究:①找出满足|x﹣3|+|x+1|=6的x的所有值是 ;
②设|x﹣3|+|x+1|=p,当x的值取在不小于﹣1且不大于3的范围时,p的值是不变的,而且是p的最小值,这个最小值是 ;当x的值取在 的范围时,|x|+|x﹣2|的最小值是 .
问题(3):求|x﹣3|+|x﹣2|+|x+1|的最小值以及此时x的值.
【答案】(1);(2)①和4;②4;当x的取值在不小于0且不大于2的范围时,的最小值是2;(3)的最小值为4,此时x的值为2.
【解析】
(1)根据材料中两点间距离的表示方法,分别表示出A到B的距离、A到C的距离,然后求和即可;
(2)①表示的是在数轴上的一点到的距离之和为6,因此分三种情况分析,去绝对值计算即可;
②先根据x的取值范围去绝对值,再求解即可得出答案;利用同样的方法,分析即可;
(3)根据数轴的定义,划分x的取值范围,去绝对值进行计算即可.
(1)由题意得:A到B的距离为,A到C的距离为
则所求的式子为:;
(2)①表示的是在数轴上的一点到的距离之和为6
分以下三种情况:
当时,可化为,解得
当时,可化为,无解,不满足题意
当时,可化为,解得
综上,满足的x的所有值是和4;
②由题意得,当时,p取得最小值
则p的最小值是4
表示的是在数轴上的一点到的距离之和
当时,
当时,
当时,
综上,当x的取值在不小于0且不大于2的范围时,的最小值是2;
(3)表示的是在数轴上的一点到的距离之和
当时,
当时,
此时,,则
当时,
此时,
当时,
综上,的最小值为4,此时,解得.
科目:初中数学 来源: 题型:
【题目】为了解全校学生上学的交通方式,我校九年级(21)班的5名同学联合设计了一份调查问卷,对该校部分学生进行了随机调查.按A(骑自行车)、B(乘公交车)、C(步行)、D(乘私家车)、E(其他方式)设置选项,要求被调查同学从中单选.并将调查结果绘制成条形统计图1和扇形统计图2,根据以上信息,解答下列问题:
(1)本次接受调查的总人数是 人,其中“步行”的人数是 人;
(2)在扇形统计图中,“乘公交车”的人数所占的百分比是 ,“其他方式”所在扇形的圆心角度数是 ;
(3)已知这5名同学中有2名女同学,要从中选两名同学汇报调查结果.请你用列表法或画树状图的方法,求出恰好选出1名男生和1名女生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,点D、E、F分别是边AB、BC、CA的中点,AH是边BC上的高.
(1)求证:四边形ADEF是平行四边形;
(2)若∠AHF=20°,∠AHD=50°,求∠DEF的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,以直线AB上一点O为端点作射线OC,使∠AOC=65°,将一个直角三角形的直角顶点放在点O处.(注:∠DOE=90°)
(1)如图①,若直角三角板DOE的一边OD放在射线OA上,则∠COE °.
(2)如图②,将直角三角板DOE绕点O顺时针方向转动到某个位置,若OC恰好平分∠AOE,则∠COD= °.
(3)如图③,将直角三角板DOE绕点O顺时针方向转动到某个位置,0°<∠AOD<180°,如果∠COD=∠AOE,求∠COD的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了解学生每周课外阅读时间的情况,对3000名学生采用随机抽样的方式进行了问卷调查,调查结果分为“2小时以内”、“2小时~3小时”、“3小时~4小时”和“4小时以上”四个等级,分别用A、B、C、D表示,根据调查结果绘制成了如图所示的两幅不完整的统计图,由图中所给出的信息解答下列问题:
(1)x= ,样本容量是 ;
(2)将不完整的条形统计图补充完整;
(3)请估计该校3000名学生中每周课外阅读时间在“2小时以上”的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】光在反射时,光束的路径可用图(1)来表示,叫做入射光线,叫做反射光线,从入射点引出的一条垂直于镜面的射线叫做法线,与的夹角叫入射角,与的夹角叫反射角.根据科学实验可得:.则图(1)中与的数量关系是:____________理由:___________;
生活中我们可以运用“激光”和两块相交的平面镜进行测距.如图(2)当一束“激光”射入到平面镜上、被反射到平面镜上,又被平面镜反射后得到反射光线.
(1)若反射光线沿着入射光线的方向反射回去,即,且,则______,______;
(2)猜想:当______时,任何射到平面镜上的光线经过平面镜和的两次反射后,入射光线与反射光线总是平行的.请你根据所学过的知识及新知说明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学生小明、小华为了解本校八年级学生每周上网的时间,各自进行了抽样调查.小明调查了八年级信息技术兴趣小组中40名学生每周上网的时间,算得这些学生平均每周上网时间为2.5h;小华从全体320名八年级学生名单中随机抽取了40名学生,调查了他们每周上网的时间,算得这些学生平均每周上网时间为1.2h.小明与小华整理各自样本数据,如表所示.
时间段(h/周) | 小明抽样人数 | 小华抽样人数 |
0~1 | 6 | 22 |
1~2 | 10 | 10 |
2~3 | 16 | 6 |
3~4 | 8 | 2 |
(每组可含最低值,不含最高值)
请根据上述信息,回答下列问题:
(1)你认为哪位学生抽取的样本具有代表性?_____.
估计该校全体八年级学生平均每周上网时间为_____h;
(2)在具有代表性的样本中,中位数所在的时间段是_____h/周;
(3)专家建议每周上网2h以上(含2h)的同学应适当减少上网的时间,根据具有代表性的样本估计,该校全体八年级学生中有多少名学生应适当减少上网的时间?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 已知,如图,点D是△ABC的边AB的中点,四边形BCED是平行四边形.
(1)求证:四边形ADCE是平行四边形;
(2)在△ABC中,若AC=BC,则四边形ADCE是 ;(只写结论,不需证明)
(3)在(2)的条件下,当AC⊥BC时,求证:四边形ADCE是正方形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com