精英家教网 > 初中数学 > 题目详情
9.如图,在△ABC中,∠CAB=78°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,BC与B′C′交于点P,则∠BPB′的大小为24°.

分析 旋转中心为点A,B与B′,C与C′分别是对应点,根据旋转的性质可知,旋转角∠BAB′=∠CAC′,AC=AC′,再利用平行线的性质得∠C′CA=∠CAB,把问题转化到等腰△ACC′中,根据内角和定理求∠CAC′,即可求出∠BAB′的度数,然后根据三角形的内角和即可得到结论.

解答 解:∵CC′∥AB,∠CAB=78°,
∴∠C′CA=∠CAB=78°,
又∵C、C′为对应点,点A为旋转中心,
∴AC=AC′,即△ACC′为等腰三角形,
∴∠BAB′=∠CAC′=180°-2∠C′CA=24°,
∵∠AEB=∠B′EP,∠B=∠B′,
∴∠BPB′=∠BAB′=24°,
故答案为:24°.

点评 本题考查了旋转的基本性质,对应点到旋转中心的距离相等,对应点与旋转中心的连线的夹角为旋转角.同时考查了平行线的性质.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.计算或化简:
(1)-22+(π-2017)0-2sin60°+|1-$\sqrt{3}}$|;       
(2)a(3-2a)+2(a+1)(a-1).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,在平面直角坐标系中,已知A(-2,0),C(0,4),点O′为x轴上一点,⊙O′过A,C两点交x轴于另一点B.
(1)求点O′的坐标;
(2)已知抛物线y=ax2+bx+c过A,B,C三点,且与⊙O′交于另一点E,求抛物线的解析式,并直接写出点E 坐标;
(3)设点P(t,0)是线段OB上一个动点,过点P作直线l⊥x轴,交线段BC于F,交抛物线y=ax2+bx+c于点G,请用t表示四边形BPCG的面积S;
(4)在(3)的条件下,四边形BPCG能否为平行四边形?若能,请求出t的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.在平面直角坐标系中,点A的坐标是(-2,3),作点A关于x轴的对称点,得到点A′,再将点A'向右平移3个单位得到点A″,则点A''的坐标是(1,-3).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.(1)计算:(3-π)0-$\sqrt{9}$+|3-$\sqrt{3}$|+(tan30°)-1
(2)定义新运算:对于任意实数a,b,都有a⊕b=a(a-b)+1,等式右边是通常的加法、减法及乘法运算.
比如:2⊕5=2×(2-5)+1
=2×(-3)+1
=-6+1
=-5
若3⊕x的值小于13,求x的取值范围,并在如图所示的数轴上表示出来.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.如图所示的几何体由一个圆柱体和一个长方体组成,它的主视图是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如图,过锐角△ABC的顶点A作DE∥BC,AB恰好平分∠DAC,AF平分∠EAC交BC的延长线于点F.在AF上取点M,使得AM=$\frac{1}{3}$AF,连接CM并延长交直线DE于点H.若AC=2,△AMH的面积是$\frac{1}{12}$,则$\frac{1}{tan∠ACH}$的值是8-$\sqrt{15}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.定义:点P是△ABC内部或边上的点(顶点除外),在△PAB,△PBC,△PCA中,若至少有一个三角形与△ABC相似,则称点P是△ABC的自相似点.
例如:如图1,点P在△ABC的内部,∠PBC=∠A,∠BCP=∠ABC,则△BCP∽△ABC,故点P是△ABC的自相似点.
请你运用所学知识,结合上述材料,解决下列问题:
在平面直角坐标系中,点M是曲线y=$\frac{3\sqrt{3}}{x}$(x>0)上的任意一点,点N是x轴正半轴上的任意一点.
(1)如图2,点P是OM上一点,∠ONP=∠M,试说明点P是△MON的自相似点;当点M的坐标是($\sqrt{3}$,3),点N的坐标是($\sqrt{3}$,0)时,求点P的坐标;
(2)如图3,当点M的坐标是(3,$\sqrt{3}$),点N的坐标是(2,0)时,求△MON的自相似点的坐标;
(3)是否存在点M和点N,使△MON无自相似点?若存在,请直接写出这两点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,矩形ABCD的对角线AC,BD相交于点O,△COD关于CD的对称图形为△CED.
(1)求证:四边形OCED是菱形;
(2)连接AE,若AB=6cm,BC=$\sqrt{5}$cm.
①求sin∠EAD的值;
②若点P为线段AE上一动点(不与点A重合),连接OP,一动点Q从点O出发,以1cm/s的速度沿线段OP匀速运动到点P,再以1.5cm/s的速度沿线段PA匀速运动到点A,到达点A后停止运动,当点Q沿上述路线运动到点A所需要的时间最短时,求AP的长和点Q走完全程所需的时间.

查看答案和解析>>

同步练习册答案