精英家教网 > 初中数学 > 题目详情
已知关于x的一元二次方程x2-(k+1)x+k=0.
(1)求证:对于任意实数k,方程都有两个实数根;
(2)若此方程的一个实数根为0,求k的值及方程的另一个根.
分析:(1)要想证明对于任意实数k,方程有两个实数根,只要证明△≥0即可;
(2)把方程的一个实数根0代入原方程求出k的值,然后把k的值代入原方程求出方程的另一个根.
解答:(1)证明:∵△=b2-4ac=[-(k+1)]2-4×1×k=(k-1)2≥0,
∴对于任意实数k,方程有两个不相等的实数根.

(2)解:把x=0代入方程得:0-(k+1)×0+k=0,解得k=0,
把k=0代入方程得:x2-x=0,解得:x1=0,x2=1,
故k的值为0,方程的另一个根为0.
点评:本题考查了一元二次方程根的情况与判别式△的关系:
(1)△>0?方程有两个不相等的实数根;
(2)△=0?方程有两个相等的实数根;
(3)△<0?方程没有实数根.
同时本题考查了方程的解的定义,就是能使方程左右两边相等的未知数的值.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知关于x的一元二次x2+(2k-3)x+k2=0的两个实数根x1,x2且x1+x2=x1x2,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的一元二次2x2-(2m2-1)x-m-4=0有一个实数根为
32

(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的一元二次x2-6x+k+1=0的两个实数根x1,x2
1
x1
+
1
x2
=1
,则k的值是(  )
A、8B、-7C、6D、5

查看答案和解析>>

科目:初中数学 来源:第23章《一元二次方程》中考题集(23):23.3 实践与探索(解析版) 题型:解答题

已知关于x的一元二次2x2-(2m2-1)x-m-4=0有一个实数根为
(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

科目:初中数学 来源:2007年全国中考数学试题汇编《一元二次方程》(04)(解析版) 题型:解答题

(2007•汕头)已知关于x的一元二次2x2-(2m2-1)x-m-4=0有一个实数根为
(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

同步练习册答案