精英家教网 > 初中数学 > 题目详情

【题目】如图,已知AB是⊙O的直径,CD与⊙O相切于C,BE∥CO.
(1)求证:BC是∠ABE的平分线;
(2)若DC=8,⊙O的半径OA=6,求CE的长.

【答案】
(1)证明:∵DE是切线,

∴OC⊥DE,

∵BE∥CO,

∴∠OCB=∠CBE,

∵OC=OB,

∴∠OCB=∠OBC,

∴∠CBE=∠CBO,

∴BC平分∠ABE.


(2)在Rt△CDO中,∵DC=8,OC=0A=6,

∴OD= =10,

∵OC∥BE,

=

=

∴EC=4.8.


【解析】(1)由BE∥CO,推出∠OCB=∠CBE,由OC=OB,推出∠OCB=∠OBC,可得∠CBE=∠CBO;(2)在Rt△CDO中,求出OD,由OC∥BE,可得 = ,由此即可解决问题;
【考点精析】解答此题的关键在于理解切线的性质定理的相关知识,掌握切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下列说法正确的是( ) ①试验条件不会影响某事件出现的频率;
②在相同的条件下试验次数越多,就越有可能得到较精确的估计值,但各人所得的值不一定相同;
③如果一枚骰子的质量分布均匀,那么抛掷后每个点数出现的机会均等;
④抛掷两枚质量分布均匀的相同的硬币,出现“两个正面”、“两个反面”、“一正一反”的机会相同.
A.①②
B.②③
C.③④
D.①③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】探索与发现:

(1)若直线a1a2a2a3,则直线a1a3的位置关系是__________,请说明理由.

(2)若直线a1a2a2a3a3a4,则直线a1a4的位置关系是________(直接填结论,不需要证明)

(3)现在有2 011条直线a1a2a3a2 011,且有a1a2a2a3a3a4a4a5,请你探索直线a1a2 011的位置关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABCD,FCD上一点,∠EFD=60°,AEC=2CEF,若6°<BAE<15°,C的度数为整数,则∠C的度数为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的外接圆为⊙O,点P在劣弧上(不与C点重合).
(1)求∠BPC的度数;
(2)若⊙O的半径为8,求正方形ABCD的边长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】先填写表,通过观察后再回答问题:

a

0.0001

0.01

1

100

10000

0.01

x

1

y

100

(1)表格中x=   ,y=   

(2)从表格中探究a数位的规律,并利用这个规律解决下面两个问题:

①已知≈3.16,则   

②已知=8.973,若=897.3,用含m的代数式表示b,则b=   

(3)试比较a的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某糕点厂中秋节前要制作一批盒装月饼,每盒装1个大月饼和7个小月饼,制作1个大月饼要用0.06kg面粉,1个小月饼要用0.015kg面粉,现共有面粉330kg,制作两种月饼各用多少kg面粉时,才能使生产的大小月饼刚好配套成盒?最多能生产多少盒月饼?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,点C在⊙O上,点P是直径AB上的一点(不与A重合),过点P作AB的垂线交BC于点Q.
(1)在线段PQ上取一点D,使DQ=DC,连接DC,试判断CD与⊙O的位置关系,并说明理由.
(2)若cosB= ,BP=6,AP=1,求QC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为推广阳光体育大课间活动,我市某中学决定在学生中开设A:实心球.B:立定跳远,C:跳绳,D:跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图.请结合图中的信息解答下列问题:

1)在这项调查中,共调查了多少名学生?

2)请计算本项调查中喜欢立定跳远的学生人数和所占百分比,并将两个统计图补充完整.

查看答案和解析>>

同步练习册答案