精英家教网 > 初中数学 > 题目详情
13.记M(1)=-2,
M(2)=(-2)×(-2),
M(3)=(-2)×(-2)×(-2),…,
M(n)=$\underbrace{(-2)×(-2)×…(-2)}_{n个}$
(1)填空:M(5)=-32,M(1000)是一个正数(填“正数”或“负数”).
(2)计算M(6)+M(7)的值.
(3)当M(n)<0时,求2014M(n)+1007M(n+1)的值.

分析 (1)根据题意确定出所求式子的值即可;
(2)原式根据题意计算即可得到结果;
(3)原式根据题意化简,计算即可得到结果.

解答 解:(1)M(5)=-32,M(1000)是一个正数;
(2)M(6)+M(7)=64-128=-64;
(3)根据题意得:原式=2014×(-2)n+1007×(-2)n+1=2014×(-2)n-2014×(-2)n=0.
故答案为:(1)-32;正数.

点评 此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.阅读下面的证明过程,在括号内补充推理的依据.
已知:如图,∠ACE是△ABC的外角,BD平分∠ABC,CD平分∠ACE.
求证:$\frac{1}{2}$∠A=∠D
证明:∵BD平分∠ABC(已知)
∴∠1=$\frac{1}{2}$∠ABC(角平分线的定义)
同理得∠2=$\frac{1}{2}$∠ACE
又∵∠ACE=∠A+∠ABC(三角形外角的性质)
∴$\frac{1}{2}$∠ACE=$\frac{1}{2}$∠A+$\frac{1}{2}$∠ABC(等式的性质)
即∠2=$\frac{1}{2}$∠A+∠1(等量代换)
又∵∠2=∠D+∠1
∴$\frac{1}{2}$∠A+∠1=∠D+∠1(三角形外角的性质)
∴$\frac{1}{2}$∠A=∠D.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.如图,将一张宽为2cm的长方形纸条折叠,折痕为AB,重叠部分为△ABC.如果∠ACB=30°,那么△ABC的面积等于4cm2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.下列计算正确的是(  )
A.a2•a3=a6B.a4÷a4=0C.(-2x)3=-6x3D.(a34=a12

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.已知实数x、y、z在数轴上的对应点如图所示,化简:$\sqrt{(x-y)^{2}}$-($\sqrt{y-z}$)2+$\root{3}{(x-z)^{3}}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,点D是等腰直角△ABC斜边AB的中点,M是边BC上的点,将△DBM沿DM折叠,点B的对称点E落在直线AC的左侧,EM交边AC于点F,ED交边AC于点G.
(1)求证:∠ADE+∠EMC=90°.
(2)若△FCM的周长为12,求直角边BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.如图,已知点A(6,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB、AC相交于点D.当OD=AD=5时,这两个二次函数的最大值之和等于4.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中正方形顶点A、B在围成的正方体中的距离是(  )
A.0B.1C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.一次函数y=x-1的图象是一条直线,函数y=|x|-1的图象具有怎样的形状呢?
根据绝对值的意义,当x≥0时,|x|=x,则y=x-1;当x<0时,|x|=-x,则y=-x-1.因此,我们可以作出y=-x-1在y轴的左侧部分的图象,同时作出y=x-1在y轴右侧部分的图象,这两条射线结合起来即为函数y=|x|-1的图象,如图所示.
(1)这个图象有什么特点?
(2)你能通过对直线y=x-1进行适当的变化得到这个函数的图象吗?
(3)根据(1)(2)中得到的启发,你能作出函数y=-2|x|+1的图象吗?

查看答案和解析>>

同步练习册答案