【题目】阅读下面的材料,先完成阅读填空,再按要求答题:
(1)阅读填空
sin30°= ,cos30°= ,则sin230°+cos230°= ;①
sin45°= ,cos45°= ,则sin245°+cos245°= ;②
sin60°= ,cos60°= ,则sin260°+cos260°= .③
…
观察上述等式,猜想:对任意锐角A,都有sin2A+cos2A= .④
(2)如图,在锐角三角形ABC中,利用三角函数的定义及勾股定理对∠A证明你的猜想;
(3)已知:∠A为锐角(cosA>0)且sinA= ,求cosA.
【答案】
(1)1;1;1;1
(2)
解:如图,过点B作BD⊥AC于D,则∠ADB=90°.
∵sinA= ,cosA= ,
∴sin2A+cos2A=( )2+( )2= ,
∵∠ADB=90°,
∴BD2+AD2=AB2,
∴sin2A+cos2A=1
(3)
解:∵sinA= ,sin2A+cos2A=1,∠A为锐角,
∴cosA= =
【解析】解:∵sin30°= ,cos30°= ,
∴sin230°+cos230°=( )2+( )2= + =1;①
∵sin45°= ,cos45°= ,
∴sin245°+cos245°=( )2+( )2= + =1;②
∵sin60°= ,cos60°= ,
∴sin260°+cos260°=( )2+( )2= + =1.③
观察上述等式,猜想:对任意锐角A,都有sin2A+cos2A=1.④
【考点精析】利用勾股定理的概念和同角三角函数的关系(倒数、平方和商)对题目进行判断即可得到答案,需要熟知直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;各锐角三角函数之间的关系:平方关系(sin2A+cos2A=1);倒数关系(tanAtan(90°—A)=1);弦切关系(tanA=sinA/cosA ).
科目:初中数学 来源: 题型:
【题目】如图,顶点为(1,4)的抛物线y=ax2+bx+c与直线y= x+n交于点A(2,2),直线y= x+n与y轴交于点B与x轴交于点C
(1)求n的值及抛物线的解析式
(2)P为抛物线上的点,点P关于直线AB的对称轴点在x轴上,求点P的坐标
(3)点D为x轴上方抛物线上的一点,点E为轴上一点,以A、B、E、D为顶点的四边为平行四边形时,直接写出点E的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,C是⊙O是一点,过点B作⊙O的切线,与AC延长线交于点D,连接BC,OE//BC交⊙O于点E,连接BE交AC于点H.
(1)求证:BE平分∠ABC;
(2)连接OD,若BH=BD=2,求OD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2014年3月31日是全国中小学生安全教育日,某校全体学生参加了“珍爱生命,预防溺水”专题活动,学习了游泳“五不准”,为了了解学生对“五不准”的知晓情况,随机抽取了200名学生作调查,请根据下面两个不完整的统计图解答问题:
(1)求在这次调查中,“能答5条”人数的百分比和“仅能答3条”的人数;
(2)若该校共有2000名学生,估计该校能答3条不准以上(含3条)的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,所有正三角形的一边平行于x轴,一顶点在y轴上.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1、A2、A3、A4…表示,其中A1A2与x轴、底边A1A2与A4A5、A4A5与A7A8、…均相距一个单位,则顶点A3的坐标是 , A92的坐标是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2013年3月28日是全国中小学生安全教育日,某学校为加强学生的安全意识,组织了全校1500名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计.请根据尚未完成的频率分布表和频数分布直方图,解答下列问题: 频率分布表
分数段 | 频数 | 频率 |
50.5﹣60.5 | 16 | 0.08 |
60.5﹣70.5 | 40 | 0.2 |
70.5﹣80.5 | 50 | 0.25 |
80.5﹣90.5 | m | 0.35 |
90.5﹣100.5 | 24 | n |
(1)这次抽取了名学生的竞赛成绩进行统计,其中:m= , n=;
(2)补全频数分布直方图;
(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】从3,﹣1, ,1,﹣3这5个数中,随机抽取一个数记为a,若数a使关于x的不等式组 无解,且使关于x的分式方程 ﹣ =﹣1有整数解,那么这5个数中所有满足条件的a的值之积是( )
A.
B.﹣2
C.﹣3
D.﹣
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴相交于A,B两点,与y轴相交于点C,直线y=kx+n(k≠0)经过B,C两点,已知A(1,0),C(0,3),且BC=5.
(1)分别求直线BC和抛物线的解析式(关系式);
(2)在抛物线的对称轴上是否存在点P,使得以B,C,P三点为顶点的三角形是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某批发市场有中招考试文具套装,其中A品牌的批发价是每套20元,B品牌的批发价是每套25元,小王需购买A、B两种品牌的文具套装共1000套.
(1)若小王按需购买A、B两种品牌文具套装共用22000元,则各购买多少套?
(2)凭会员卡在此批发市场购买商品可以获得8折优惠,会员卡费用为500元.若小王购买会员卡并用此卡按需购买1000套文具套装,共用了y元,设A品牌文具套装买了x包,请求出y与x之间的函数关系式.
(3)若小王购买会员卡并用此卡按需购买1000套文具套装,共用了20000元,他计划在网店包邮销售这两种文具套装,每套文具套装小王需支付邮费8元,若A品牌每套销售价格比B品牌少5元,请你帮他计算,A品牌的文具套装每套定价不低于多少元时才不亏本(运算结果取整数)?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com