4£®Èçͼ£¬¾ØÐÎA¡äB¡äC¡äO¡äÊǾØÐÎOABC£¨±ßOAÔÚxÖáÕý°ëÖáÉÏ£¬±ßOCÔÚyÖáÕý°ëÖáÉÏ£©ÈÆBµã˳ʱÕëÐýתµÃµ½µÄ£®O¡äÔÚxµÄÕý°ëÖáÉÏ£¬BµÄ×ø±êΪ£¨1£¬3£©£®
£¨1£©Èç¹û¶þ´Îº¯Êýy=x2+bx+cµÄͼÏó¾­¹ýO¡¢O¡äÁ½µã£¬ÇóÕâ¸ö¶þ´Îº¯Êý½âÎöʽ£»
£¨2£©Çó±ßC¡äO¡äËùÔÚÖ±Ïߵĺ¯Êý½âÎöʽ£»
£¨3£©½«ÉÏÊöÅ×ÎïÏß×÷Êʵ±Æ½ÒÆ£¬µÃÅ×ÎïÏßy1=a£¨x-h£©2£¬µ±4£¼x¡Ümʱ£¬y1¡Üxºã³ÉÁ¢£¬ÇómµÄ×î´óÖµ£®

·ÖÎö £¨1£©Á¬½ÓOB£¬O¡äB£¬¸ù¾ÝÐýתµÄÐÔÖʿɵÃOB=O¡äB£¬´Ó¶øÇóµÃµãO¡äµÄ×ø±ê£¬ÀûÓôý¶¨ÏµÊý·¨È·¶¨¶þ´Îº¯ÊýµÄ½âÎöʽ¼´¿É£»
£¨2£©ÉèµãDµÄ×ø±êÊÇ£¨1£¬a£©£¬±íʾ³öO¡äDµÄ³¤¶È£¬È»ºóÀûÓù´¹É¶¨ÀíÁÐʽÇó³öaµÄÖµ£¬´Ó¶øµÃµ½µãDµÄ×ø±ê£¬ÔÙ¸ù¾Ý´ý¶¨ÏµÊý·¨ÁÐʽ¼´¿ÉÇó³öÖ±ÏßC¡äO¡äµÄ½âÎöʽ£»
£¨3£©ÏȰÑy=x2-2xÅä³É¶¥µãʽ£¬Ò×µÃÅ×ÎïÏßC1£ºy1=£¨x-1£©2£¬ÔÙÇó³öÅ×ÎïÏßÓëÖ±Ïßy=xµÄ½»µã×ø±ê£¬ÓÚÊǿɵõ½y1¡Üxºã³ÉÁ¢µÄmµÄ·¶Î§£¬Ôò¿ÉµÃµ½mµÄ×î´óÖµ£®

½â´ð ½â£¨1£©Èçͼ£¬Á¬½ÓOB£¬O¡äB£¬ÔòOB=O¡äB£¬
¡ßËıßÐÎOABCÊǾØÐΣ¬
¡àBA¡ÍOA£¬
¡àAO=AO¡ä£¬
¡ßBµãµÄ×ø±êΪ£¨1£¬3£©£¬
¡àOA=1£¬
¡àAO¡ä=1£¬
¡àµãO¡äµÄ×ø±êÊÇ£¨2£¬0£©£¬
¡ß¶þ´Îº¯Êýy=x2+bx+cµÄͼÏó¾­¹ýO¡¢O¡äÁ½µã£¬
¡à$\left\{\begin{array}{l}{c=0}\\{4+2b+c=0}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{b=-2}\\{c=0}\end{array}\right.$£¬
¡à¶þ´Îº¯ÊýµÄ½âÎöʽΪy=x2-2x£»

£¨2£©ÉèµãDµÄ×ø±êΪ£¨1£¬a£©£¬ÔòAD=a£¬
¡ßµãBµÄ×ø±êÊÇ£¨1£¬3£©£¬
¡àO¡äD=3-a£¬
ÔÚRt¡÷ADO¡äÖУ¬AD2+AO¡ä2=O¡äD2£¬
¡àa2+12=£¨3-a£©2£¬
½âµÃa=$\frac{4}{3}$£¬
¡àµãDµÄ×ø±êΪ£¨1£¬$\frac{4}{3}$£©£¬
ÉèÖ±ÏßC¡äO¡äµÄ½âÎöʽΪy=kx+b£¬
Ôò $\left\{\begin{array}{l}{2k+b=0}\\{k+b=\frac{4}{3}}\end{array}\right.$£¬
½âµÃ $\left\{\begin{array}{l}{k=-\frac{4}{3}}\\{b=\frac{8}{3}}\end{array}\right.$£¬
¡à±ßC¡äO¡äËùÔÚÖ±ÏߵĽâÎöʽ£ºy=-$\frac{4}{3}$x+$\frac{8}{3}$£»

£¨3£©y=x2-2x=£¨x-1£©2-1£¬ËùÒÔ½«Å×ÎïÏßÏòÉÏÆ½ÒÆ1¸öµ¥Î»µÃÅ×ÎïÏßC1£ºy1=£¨x-1£©2£¬
½â·½³Ì×é$\left\{\begin{array}{l}{y=£¨x-1£©^{2}}\\{y=x}\end{array}\right.$µÃ$\left\{\begin{array}{l}{x=\frac{3+\sqrt{5}}{2}}\\{y=\frac{3+\sqrt{5}}{2}}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=\frac{3-\sqrt{5}}{2}}\\{y=\frac{3-\sqrt{5}}{2}}\end{array}\right.$£®
ËùÒÔµ±4£¼x¡Ümʱ£¬y1¡Üxºã³ÉÁ¢£¬ÔòmµÄ×î´óֵΪ$\frac{3+\sqrt{5}}{2}$£®

µãÆÀ ±¾ÌâÊǶԶþ´Îº¯ÊýµÄ×ۺϿ¼²é£¬Ö÷ÒªÓоØÐεÄÐÔÖÊ£¬µÈÑüÈý½ÇÐÎÈýÏߺÏÒ»µÄÐÔÖÊ£¬È«µÈÈý½ÇÐεÄÅж¨ÓëÐÔÖÊ£¬´ý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽ£¬¹´¹É¶¨ÀíµÈ£¬×ÛºÏÐÔ½ÏÇ¿£¬ÄѶÈÖеȣ¬Ðè×Ðϸ·ÖÎöϸÐļÆË㣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÒÑÖªÕûÊýa1£¬a2£¬a3£¬a4£¬¡­Âú×ãÏÂÁÐÌõ¼þ£ºa1=0£¬a2=-|a1+1|£¬a3=-|a2+2|£¬a4=-|a3+3|£¬¡­ÒÀ´ËÀàÍÆ£¬Ôòa2013µÄֵΪ£¨¡¡¡¡£©
A£®-1005B£®-1006C£®-1007D£®-2012

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®Èçͼ£¬µÈ±ßÈý½ÇÐÎABCµÄÍâ½ÓÔ²¡ÑOµÄ°ë¾¶ÎªR£¬ÇóµÈ±ßÈý½ÇÐÎABCµÄ±ß³¤£¬±ßÐľࡢÖܳ¤ºÍÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÒÑÖªa-5bµÄֵΪ-1£¬Ôò´úÊýʽ£¨a-5b£©2+5b-a-3µÄֵΪ£¨¡¡¡¡£©
A£®-1B£®0C£®1D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÂòÒ»¼þÖеµµÄ2015ÑòÈ˼ªÏéÎïµÄ³µÊÎÐèxÔª£¬Âò4¼þÖеµµÄÇ®¿ÉÂò5¼þµÍµµµÄÕâÖÖ³µÊΣ¬Âò5¼þÖеµµÄÇ®¿ÉÂò1¼þ¸ßµµµÄÕâÖÖ³µÊΣ¬ÔòÂò1¼þ¸ßµµ³µÊΡ¢2¼þÖеµ³µÊΡ¢5¼þµÍµµ³µÊι²Ð裨¡¡¡¡£©
A£®9xÔªB£®10xÔªC£®11xÔªD£®13xÔª

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÓüÆËãÆ÷¼ÆË㣨-3£©3£¬°´¼ü˳Ðò¼°ÏÔʾµÄ½á¹ûΪ£º3+/-3=-27£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªÈý½ÇÐÎAOCµÄ¶¥µã×ø±ê·Ö±ðΪO£¨0£¬0£©£¬A£¨$\sqrt{3}$£¬0£©£¬C£¨0£¬1£©£®½«¡÷AOCÑØAC·­Õ۵õ½¡÷APC£®
£¨1£©Pµã×ø±êΪ£¨$\frac{\sqrt{3}}{2}$£¬$\frac{3}{2}$£©£»
£¨2£©½«¡÷PCAÈÆCAµÄÖеãM˳ʱÕëÐýת90¡ãµ½¡÷P1C1A1µÄλÖ㬵ãP1µÄ×ø±êΪ£¨1+$\frac{\sqrt{3}}{2}$£¬$\frac{1}{2}$£©£»
£¨3£©»­³öÏà¹ØÍ¼ÐΣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬¶ÔÓÚÈÎÒâÁ½µãP1£¨x1£¬y1£©ÓëP2£¨x2£¬y2£©µÄ¡°·Ç³£¾àÀ롱£¬¸ø³öÈç϶¨Ò壺
Èô|x1-x2|¡Ý|y1-y2|£¬ÔòµãP1ÓëµãP2µÄ¡°·Ç³£¾àÀ롱Ϊ|x1-x2|£»
Èô|x1-x2|£¼|y1-y2|£¬ÔòµãP1ÓëµãP2µÄ¡°·Ç³£¾àÀ롱Ϊ|y1-y2|£®
ÀýÈ磺µãP1£¨1£¬2£©£¬µãP2£¨3£¬5£©£¬ÒòΪ|1-3|£¼|2-5|£¬ËùÒÔµãP1ÓëµãP2µÄ¡°·Ç³£¾àÀ롱Ϊ|2-5|=3£¬Ò²¾ÍÊÇͼ1ÖÐÏß¶ÎP1QÓëÏß¶ÎP2Q³¤¶ÈµÄ½Ï´óÖµ£¨µãQΪ´¹Ö±ÓÚyÖáµÄÖ±ÏßP1QÓë´¹Ö±ÓÚxÖáµÄÖ±ÏßP2QµÄ½»µã£©£®
ÒÑÖªµãA£¨0£¬1£©£¬BΪyÖáÉϵÄÒ»¸ö¶¯µã£¬ÈôµãAÓëµãBµÄ¡°·Ç³£¾àÀ롱Ϊ3£¬Ð´³öÂú×ãÌõ¼þµÄµãBµÄ×ø±ê£¨0£¬4£©»ò£¨0£¬-2£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®½«¡°xµÄ$\frac{1}{2}$ÓëxµÄ$\frac{1}{5}$µÄºÍÊÇ14¡±±íʾ³É¹ØÓÚxµÄ·½³ÌÊÇ$\frac{1}{2}$x+$\frac{1}{5}$x=14£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸