精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,OA⊥OB,AB⊥x轴于点C,点A( ,1)在反比例函数y= 的图象上.

(1)求反比例函数y= 的表达式;
(2)在x轴的负半轴上存在一点P,使得S△AOP= S△AOB , 求点P的坐标;
(3)若将△BOA绕点B按逆时针方向旋转60°得到△BDE.直接写出点E的坐标,并判断点E是否在该反比例函数的图象上.

【答案】
(1)

解:∵点A( ,1)在反比例函数y= 的图象上,

∴k= ×1=

∴反比例函数表达式为y=


(2)

解:∵A( ,1),AB⊥x轴于点C,

∴OC= ,AC=1,

∵OA⊥OB,OC⊥AB,

∴∠A=∠COB,

∴tan∠A= =tan∠COB=

∴OC2=ACBC,即BC=3,

∴AB=4,

∴S△AOB= × ×4=2

∴S△AOP= S△AOB=

设点P的坐标为(m,0),

×|m|×1= ,解得|m|=2

∵P是x轴的负半轴上的点,

∴m=﹣2

∴点P的坐标为(﹣2 ,0)


(3)

解:由(2)可知tan∠COB= = =

∴∠COB=60°,

∴∠ABO=30°,

∵将△BOA绕点B按逆时针方向旋转60°得到△BDE,

∴∠OBD=60°,

∴∠ABD=90°,

∴BD//x轴,

在Rt△AOB中,AB=4,∠ABO=30°,

∴AO=DE=2,OB=DB=2 ,且BC=3,OC=

∴OD=DB﹣OC= ,BC﹣DE=1,

∴E(﹣ ,﹣1),

∵﹣ ×(﹣1)=

∴点E在该反比例函数图象上


【解析】(1)由点A的坐标,利用待定系数法可求得反比例函数表达式;(2)由条件可求得∠A=∠COB,利用三角函数的定义可得到OC2=ACBC,可求得BC的长,可求得△AOB的面积,设P点坐标为(m,0),由题意可得到关于m的方程,可求得m的值;(3)由条件可求得∠ABD=90°,则BD//x轴,由BD、DE的长,可求得E点坐标,代入反比例函数解析式进行判断即可.
【考点精析】本题主要考查了图形的旋转的相关知识点,需要掌握每一个点都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等.旋转的方向、角度、旋转中心是它的三要素才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,且与y轴交于点C,点D是抛物线的顶点,抛物线的对称轴DE交x轴于点E,连接BD.

(1)求经过A,B,C三点的抛物线的函数表达式;
(2)点P是线段BD上一点,当PE=PC时,求点P的坐标;
(3)在(2)的条件下,过点P作PF⊥x轴于点F,G为抛物线上一动点,M为x轴上一动点,N为直线PF上一动点,当以F、M、N、G为顶点的四边形是正方形时,请求出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在数轴上点A表示的有理数为﹣6,点B表示的有理数为6,点P从点A出发以每秒4个单位长度的速度在数轴上由AB运动,当点P到达点B后立即返回,仍然以每秒4个单位长度的速度运动至点A停止运动,设运动时间为t(单位:秒).

(1)求t=1时点P表示的有理数;

(2)求点P与点B重合时的t值;

(3)在点P沿数轴由点A到点B再回到点A的运动过程中,求点P与点A的距离(用含t的代数式表示);

(4)当点P表示的有理数与原点的距离是2个单位长度时,请求出所有满足条件的t值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,菱形ABCD的顶点A的坐标为(2,0),点B的坐标为(0,1),点C在第一象限,对角线BDx轴平行.直线y=x+3x轴、y轴分别交于点E、F.将菱形ABCD沿x轴向左平移m个单位,当点D落在EOF的内部时(不包括三角形的边),m的取值范围是(  )

A. 4<m<6 B. 4≤m≤6 C. 4<m<5 D. 4≤m<5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】现有甲、乙两个容器,分别装有进水管和出水管,两容器的进、出水速度不变,先打开乙容器的进水管,2分钟时再打开甲容器的进水管,又过2分钟关闭甲容器的进水管,再过4分钟同时打开甲容器的进、出水管.直到12分钟时,同时关闭两容器的进、出水管.打开和关闭水管的时间忽略不计.容器中的水量y()与乙容器注水时间x()之间的关系如图所示.

(1)求甲容器的进、出水速度;

(2)甲容器的进、出水管都关闭后,是否存在两容器的水量相等?若存在,求出此时的时间.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的方程2(x+1)﹣m=﹣的解比方程5(x﹣1)﹣1=4(x﹣1)+1的解大2.

(1)求第二个方程的解;

(2)求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场用2730元购进A、B两种新型节能日光灯共60盏,这两种日光灯的进价、标价如下表所示.

价格/类型

A

B

进价(元/盏)

35

65

标价(元/盏)

50

100

(1)这两种日光灯各购进多少盏?

(2)若A型日光灯按标价的9折出售,要使这批日光灯全部售出后商场获得810元的利润,则B型日光灯应按标价的几折出售?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在直角坐标系中将下列各点用线段依次连结起来,能得到什么图案?

(0,0),(-4,-2),(-3,0),(-5,-1),(-5,1),(-3,0),(-4,2),(0,0).

(1)若以上各点纵坐标保持不变,横坐标分别加3,再将所得的点用线段依次连结起来,所得的图案与原来的图案相比有什么变化?若横坐标不变,纵坐标分别加3呢?

(2)连结点(3,3),(-1,1),(0,3),(-2,2),(-2,4),(0,3),(-1,5),(3,3),观察所得图案和原图案的位置关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,P是BC边上不同于B,C的一动点,过点P作PQ⊥AB,垂足为Q,连接AP.若AC=3,BC=4,则△AQP的面积的最大值是(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案