精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系xOy中,菱形ABCD的顶点A的坐标为(2,0),点B的坐标为(0,1),点C在第一象限,对角线BDx轴平行.直线y=x+3x轴、y轴分别交于点E、F.将菱形ABCD沿x轴向左平移m个单位,当点D落在EOF的内部时(不包括三角形的边),m的取值范围是(  )

A. 4<m<6 B. 4≤m≤6 C. 4<m<5 D. 4≤m<5

【答案】A

【解析】

根据菱形的对角线互相垂直平分表示出点D的坐标,再根据直线解析式求出点D移动到EF上时的x的值,从而得到m的取值范围,即可得出答案

∵菱形ABCD的顶点A(2,0),B(1,0),

∴点D的坐标为(4,1),

y=1时,

x+3=1,

解得x=2,

∴点D向左移动2+4=6时,点DEF上,

∵点D落在EOF的内部(不包括三角形的边),

4<m<6.

故选A.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,点EF分别在边ABBC上,且AE=AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BPEF于点Q,对于下列结论:①EF=2BE②PF=2PE③FQ=4EQ④△PBF是等边三角形.其中正确的是( )

A. ①② B. ②③ C. ①③ D. ①④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作⊙O的切线DF,交AC于点F.
(1)求证:DF⊥AC;
(2)若⊙O的半径为4,∠CDF=22.5°,求阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:在四边形ABCD中,∠ABC=DCB=90°,点PBC边上,连接APPD,点EDC边上,连接BEDPAP分别交于点F和点G,若AB=PC,BP=DC,DFE=45°.

(1)如图1,求证:四边形ABED为平行四边形;

(2)如图2,把PFG沿FG翻折,得到QFG(点P与点Q为对应点),点QAD上,在不添加任何辅助线的情况下,请直接写出图中所有的平行四边形(不包括平行四边形ABED,但包括特殊的平行四边形).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在数轴上有三个点A、B、C,完成下列问题:

(1)将点B向右移动六个单位长度到点D,在数轴上表示出点D.

(2)在数轴上找到点E,使点EBA的中点(EA、C两点的距离相等),井在数轴上标出点E表示的数,求出CE的长.

(3)O为原点,取OC的中点M,分OC分为两段,记为第一次操作:取这两段OM、CM的中点分别为了N1、N2,将OC分为4段,记为第二次操作,再取这两段的中点将OC分为8段,记为第三次操作,第六次操作后,OC之间共有多少个点?求出这些点所表示的数的和.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为满足市场需求,新生活超市在端午节前夕购进价格为3元/个的某品牌粽子,根据市场预测,该品牌粽子每个售价4元时,每天能出售500个,并且售价每上涨0.1元,其销售量将减少10个,为了维护消费者利益,物价部门规定,该品牌粽子售价不能超过进价的200%,请你利用所学知识帮助超市给该品牌粽子定价,使超市每天的销售利润为800元.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,OA⊥OB,AB⊥x轴于点C,点A( ,1)在反比例函数y= 的图象上.

(1)求反比例函数y= 的表达式;
(2)在x轴的负半轴上存在一点P,使得S△AOP= S△AOB , 求点P的坐标;
(3)若将△BOA绕点B按逆时针方向旋转60°得到△BDE.直接写出点E的坐标,并判断点E是否在该反比例函数的图象上.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】嘉淇准备完成题目:化简:,发现系数印刷不清楚.

(1)他把猜成3,请你化简:(3x2+6x+8)–(6x+5x2+2);

(2)他妈妈说:你猜错了,我看到该题标准答案的结果是常数.通过计算说明原题中是几?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是用大小相等的小正方形按一定规律拼成的则第10个图形是_________个小正方形,第n 个图形是___________个小正方形.

查看答案和解析>>

同步练习册答案