精英家教网 > 初中数学 > 题目详情

【题目】某儿童游乐园推出两种门票收费方式:

方式一:购买会员卡,每张会员卡费用是元,凭会员卡可免费进园次,免费次数用完以后,每次进园凭会员卡只需元;

方式二:不购买会员卡,每次进园是元. (两种方式每次进园均指单人)

设进园次数为(为非负整数)

根据题意,填写下表:

进园次数()

···

方式一收费()

···

方式二收费()

200

设方式一收费元,方式二收费元,分别写出关于的函数关系式;

时,哪种进园方式花费少?请说明理由.

【答案】(1);(2)当时,;当时,,);(3)方式一花费少,理由见解析.

【解析】

1)根据两种收费方式分别列出等式计算即可;

2)根据收费方式,方式一分两部分,方式二利用收费==单次费用×次数即可得;

3)结合题(2)的结论可得当时,关于的函数表达式,再利用一次函数的性质求解即可得.

解:(1)

(2)当时,

时,

).

(3)方式一花费少.

时,有

,有的增大而减小.

时,有

时,有,即

∴ 当时,方式一花费少.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为了解八年级学生的户外活动情况,某校随机调查了该年级部分学生双休日户外活动的时间(单位:小时),调查结果按01122334(每组含前一个边界值,不含后一个边界值)分为四个等级,并依次用ABCD表示,调查人员整理数据并绘制了如图所示的不完整的统计图,请根据所给信息解答下列问题.

1)求本次调查的学生人数.

2)求等级D的学生人数,并补全条形统计图.

3)该年级共有600名学生,估计该年级学生双休日户外活动时间不少于2小时的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)解方程组:

2)如图,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B′处,点A落在点A′处.求证:B′EBF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰三角形ABC中,BAC=120°,AB=AC=2,点D是BC边上的一个动点(不与B、C重合),在AC上取一点E,使ADE=30°.

(1)求证:ABD∽△DCE;

(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围;

(3)当ADE是等腰三角形时,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线x轴交于AB两点,与y轴交于点C,已知A–10),且直线BC的解析式为y=x-2,作垂直于x轴的直线,与抛物线交于点F,与线段BC交于点E(不与点B和点C重合).

1)求抛物线的解析式;

2)若CEF是以CE为腰的等腰三角形,求m的值;

3)点Py轴左侧抛物线上的一点,过点P交直线BC于点M,连接PB,若以PMB为顶点的三角形与△ABC相似,求P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,点是射线上一动点,连接,将沿折叠,当点的对应点落在线段的垂直平分线上时,的长等于__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线x轴交于点y轴交于点C,抛物线经过点BC,与x轴的另一个交点为A

1)求抛物线的解析式;

2)点P是直线下方抛物线上一动点,求四边形面积最大时点P的坐标;

3)若M是抛物线上一点,且,请直接写出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】积极响应政府提出的“绿色发展·碳出行”号召,某社区决定购置一批共享单车,经市场调查知,购买3量男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需16000元.

(1)求男式单车和女式单车的单价;

(2)该社区要求男式单比女式单车多4辆,两种单车至少需要22辆,购置两种单车的费用不超过50000元,该社区有几种购置方案?怎样购置才能使所需总费用最低,最低费用是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离y()与时间t(分钟)之间的函数关系如图所示.乙回到学校用了______分钟.

查看答案和解析>>

同步练习册答案