精英家教网 > 初中数学 > 题目详情

【题目】规定两数之间的一种运算,记作();如果,那么()=c.

例如:因为,所以(28)=3.

(1)根据上述规定,填空:(416)=_________,(71)=___________,(_______,)=-2.

(2)小明在研究这种运算时发现一个现象:()=(34)小明给出了如下的证明:

设()=,则,即

所以,即(34)=

所以()=(34).

请你尝试运用这种方法解决下列问题:

①证明:(645)-(69)=(65

②猜想:()+()=(____________,____________),(结果化成最简形式).

【答案】1205

2)①证明见解析;②(x+1),(y2-3y+2).

【解析】

1)根据规定的两数之间的运算法则解答;

2)①根据同底数幂的乘法法则,结合定义证明;②根据例题和①中证明的式子作为公式进行变形即可.

1)因为42=16,所以【416=2

因为70=1,所以【71=0

因为5-2=,所以【5=-2

故答案为:205

2)①证明:设【69=x,【65=y,则6x=96y=5

5×9=45=6x6y=6x+y

∴【645=x+y

则:【645=69+65】,

∴【645-69=65】;

②∵【3n4n=34】,

∴【(x+1m,(y-1m=【(x+1),(y-1)】,【(x+1n,(y-2n=【(x+1),(y-2)】,

∴【(x+1m,(y-1m+【(x+1n,(y-2n】,

=【(x+1),(y-1)】+【(x+1),(y-2)】,

=【(x+1),(y-1)(y-2)】,

=【(x+1),(y2-3y+2)】.

故答案为:(x+1),(y2-3y+2).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】学校为了让同学们走向操场、积极参加体育锻炼,启动了“学生阳光体育运动”,张明和李亮在体育运动中报名参加了百米训练小组.在近几次百米训练中,教练对他们两人的测试成绩进行了统计和分析,请根据图表中的信息解答以下问题:

平均数

中位数

方差

张明

13.3

0.004

李亮

13.3

0.02

1)张明第2次的成绩为:    秒;

2)张明成绩的平均数为:    ;李亮成绩的中位数为:    

3)现在从张明和李亮中选择一名成绩优秀的去参加比赛,若你是他们的教练,应该选择谁?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为准备母亲节礼物,同学们委托小明用其支付宝余额团购鲜花或礼盒.每束鲜花的售价相同,每份礼盒的售价也相同.若团购15束鲜花和18份礼盒,余额差80元;若团购18束鲜花和15份礼盒,余额剩70元.若团购19束鲜花和14份礼盒,则支付宝余额剩_______元.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,点ABCD在一条直线上,填写下列空格:

AEBF(已知)

∴∠E=∠1(______________________)

∵∠E=∠F(已知〉

∴∠_____=∠F(________________)

∴________∥_________(________________________)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料,完成相应学习任务:

四点共圆的条件

我们知道,过任意一个三角形的三个顶点能作一个圆,过任意一个四边形的四个顶点能作一个圆吗?小明经过实践探究发现:过对角互补的四边形的四个顶点能作一个圆,下面是小明运用反证法证明上述命题的过程:

已知:在四边形ABCD中,∠B+∠D=180°.

求证:过点A、B、C、D可作一个圆.

证明:如图(1),假设过点A、B、C、D四点不能作一个圆,过A、B、C三点作圆,若点D在圆外,设AD与圆相交于点E,连接CE,则∠B+∠AEC=180°,而已知∠B+∠D=180°,所以∠AEC=∠D,而AEC是CED的外角,∠AEC>∠D,出现矛盾,故假设不成立,因此点D在过A、B、C三点的圆上.

如图(2)假设过点A、B、C、D四点不能作一个圆,过A、B、C三点作圆,若点D在圆内,设AD的延长线与圆相交于点E,连接CE,则∠B+∠AEC=180°,而已知∠B+∠ADC=180°,所以∠AEC=∠ADC,而ADC是CED的外角,∠ADC>∠AEC,出现矛盾,故假设不成立,因此点D在过A、B、C三点的圆上.

因此得到四点共圆的条件:过对角互补的四边形的四个顶点能作一个圆.

学习任务:

(1)材料中划线部分结论的依据是   

(2)证明过程中主要体现了下列哪种数学思想:   (填字母代号即可)

A、函数思想 B、方程思想 C、数形结合思想 D、分类讨论思想

(3)如图(3),在四边形ABCD中,∠ABC=∠ADC=90°,∠CAD=16°.AD=BD,则求ADB的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,AD是⊙O的弦,点FDA延长线上的一点,过⊙O上一点C作⊙O的切线交DF于点ECEDF

(1)求证:AC平分∠FAB

(2)AE1CE2,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知四边形DFBE是矩形,CA分别是DFBE延长线上的点, 求证:

1AE=CF

2)四边形ABCD是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题提出

某商店经销《超能陆战队》超萌“小白”(图1)玩具,“小白”玩具每个进价60元.为进行促销,商店制定如下“优惠”方案:如果一次销售数量不超过10个,则销售单价为100元/个;如果一次销售数量超过10个,每增加一个,所有“小白”玩具销售单价降低1元/个,但单价不得低于80元/个.一次销售“小白”玩具的单价y(元/个)与销售数量x(个)之间的函数关系如图2所示.

(1)求m的值并解释射线BC所表示的实际意义;

(2)写出该店当一次销售x个时,所获利润w(元)与x(个)之间的函数关系式;

(3)店长经过一段时间的销售发现:即并不是销量越大利润越大(比如,卖25个赚的钱反而比卖30个赚的钱多).为了不出现这种现象,在其他条件不变的情况下,店长应把原来的最低单价80(元/个)至少提高到多少元/个?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,P是等腰直角△ABC外一点,把BP绕点B顺时针旋转90°到BP′,已知∠AP′B=135°,P′A∶P′C=1∶3,则P′A∶PB=( )

A. 1∶ B. 1∶2 C. ∶2 D. 1∶

查看答案和解析>>

同步练习册答案