精英家教网 > 初中数学 > 题目详情

【题目】如图,P是等腰直角△ABC外一点,把BP绕点B顺时针旋转90°到BP′,已知∠AP′B=135°,P′A∶P′C=1∶3,则P′A∶PB=( )

A. 1∶ B. 1∶2 C. ∶2 D. 1∶

【答案】B

【解析】解:如图,连接APBP绕点B顺时针旋转90°BPBP=BPABP+ABP′=90°,又∵△ABC是等腰直角三角形,AB=BCCBP′+ABP′=90°∴∠ABP=CBP,在ABPCBP中,BP=BPABP=CBPAB=BC∴△ABP≌△CBPSAS),AP=PCPAPC=13AP=3PA,连接PP,则PBP是等腰直角三角形,∴∠BPP=45°PP′=PB∵∠APB=135°∴∠APP=135°45°=90°∴△APP是直角三角形,设PA=x,则AP=3x,根据勾股定理,PP′===xPP′=PB=x,解得PB=2xPAPB=x2x=12故选B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,一段抛物线:y=﹣xx﹣2)(0≤x2)记为C1,它与x轴交于两点OA1;将C1A1旋转180°得到C2,交x轴于A2;将C2A2旋转180°得到C3,交x轴于A3;…如此进行下去,得到Cn,若点P(2017,m)在抛物线Cn上,则m( )

A. 1 B. ﹣1 C. 2 D. ﹣2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,矩形ABCD中,ABAD4,在BC边上取点E,使BEAB,将△ABE向左平移到△DCF的位置,得到四边形AEFD

1)求证:四边形AEFD是菱形;

2)如图2,将△DCF绕点D旋转至△DGA,连接GE,求线段GE的长;

3)如图3,设PQ分别是EFAE上的两点,且PDQ=67.5°,试探究线段PFAQPQ之间的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:在ABCDCE中,∠ACB=DCE=90°AC=DCBC=ECABDE相交于点F

1)如图1,求证AB=DE

2)如图2,连接CF,求证∠AFC=EFC

3)如图3,在(2)的条件下,当AF=EF时,连接BDAE,延长CFBD于点GAECF于点H,若AE=8BG=2,求线段GH的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD为矩形,点E是边BC的中点,AFEDAEDF

1)求证:四边形AEDF为菱形;

2)试探究:当ABBC  ,菱形AEDF为正方形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).

(1)若ABCA1B1C1关于原点O成中心对称图形,画出A1B1C1

(2)将ABC绕着点A顺时针旋转90°,画出旋转后得到的AB2C2

(3)在x轴上存在一点P,满足点P到点B1与点C1距离之和最小,请直接写出P B1+ P C1的最小值为__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,是坐标原点,正方形的顶点分别在轴与轴上,已知正方形边长为3,点轴上一点,其坐标为,连接,点从点出发以每秒1个单位的速度沿折线的方向向终点运动,当点与点重合时停止运动,运动时间为秒.

1)连接,当点在线段上运动,且满足时,求直线的表达式;

2)连接,求的面积关于的函数表达式;

3)点在运动过程中,是否存在某个位置使得为等腰三角形,若存在,直接写出点的坐标,若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,对角线ACBD相交于点O,点EBC上的一个动点,连接DE AC于点F.

(1)如图①,当时,求的值;

(2)如图②当DE平分∠CDB时,求证:AF=OA

(3)如图③,当点EBC的中点时,过点FFGBC于点G,求证:CG=BG.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知菱形ABCD的对角线ACBD相交于点O,延长AB至点E,使BEAB,连接CE

1)求证:四边形BECD是平行四边形;

2)若∠E60°AC,求菱形ABCD的面积.

查看答案和解析>>

同步练习册答案