【题目】如图,在中, .点从点出发沿方向以每秒2个单位长的速度向点匀速运动,同时点从点出发沿方向以每秒1个单位长的速度向点匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点、运动的时间是t秒(t>0).过点作于点,连接、.
(1)求证: ;
(2)四边形能够成为菱形吗?如果能,求出相应的值;
如果不能,说明理由.
(3)当为何值时, 为直角三角形?直接写出t值.
【答案】(1)见解析(2)(3)t=秒或4秒
【解析】试题分析:(1)由∠DFC=90°,∠C=30°,证出DF=t=AE;
(2)先证明四边形AEFD为平行四边形.得出AB=5,再求出AC=2AB=10,AD=AC-DC=10-2t,若△DEF为等边三角形,则AEFD为菱形,得出AE=AD,t=10-2t,求出t的值;
(3)分三种情况讨论:①∠EDF=90°时;②∠DEF=90°时;③∠EFD=90°时,此种情况不存在;分别求出t的值即可.
试题解析:
(1)证明:据题意: ,
又∵,
∴
∴AE=DF
(2)解:四边形能够成为菱形
理由如下:
∵AB⊥BC,DF⊥BC,
∴AE∥DF
又AE=DF,
∴四边形为平行四边形
当AE=AD时,平行四边形是菱形
在Rt△中, ,
∴
设,则
则
即
解得:
∴,
又∵,
∴
帽AE=AD得:
解得:
由得, 得
而
当时
,
即
当时,平行四边形是菱形
(3)解:①∠EDF=90°时,四边形EBFD为矩形
在Rt△AED中,∠ADE=∠C=30°,
∴AD=2AE
即10﹣2t=2t,t=
②∠DEF=90°时,由(2)四边形AEFD为平行四边形知EF∥AD,
∴∠ADE=∠DEF=90°
∵∠A=90°﹣∠C=60°,
∴AD=AE
即10﹣2t=t,t=4
③∠EFD=90°时,此种情况不存在
综上所述,当t= 秒或4秒时,△DEF为直角三角形.
科目:初中数学 来源: 题型:
【题目】矩形ABCD中,AB=10,BC=3,E为AB边的中点,P为CD边上的点,且△AEP是腰长为5的等腰三角形,则DP=_____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,对角线AC上有一点P,连接BP、DP,过点P作PE⊥PB交CD于点E,连接BE.
(1)求证:BP=EP;
(2)若CE=3,BE=6,求∠CPE的度数;
(3)探究AP、PC、BE之间的数量关系,并给予证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,二次函数y=ax2+bx+3经过点A(3,0),G(﹣1,0)两点.
(1)求这个二次函数的解析式;
(2)若点M时抛物线在第一象限图象上的一点,求△ABM面积的最大值;
(3)抛物线的对称轴交x轴于点P,过点E(0, )作x轴的平行线,交AB于点F,是否存在着点Q,使得△FEQ∽△BEP?若存在,请直接写出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知在矩形ABCD中,∠ADC的平分线DE与BC边所在的直线交于点E,点P是线段DE上一定点(其中EP<PD)
(1)如图1,若点F在CD边上(不与D重合),将∠DPF绕点P逆时针旋转90°后,角的两边PD、PF分别交射线DA于点H、G.
①求证:PG=PF; ②探究:DF、DG、DP之间有怎样的数量关系,并证明你的结论.
(2)拓展:如图2,若点F在CD的延长线上(不与D重合),过点P作PG⊥PF,交射线DA于点G,你认为(1)中DF、DG、DP之间的数量关系是否仍然成立?若成立,给出证明;若不成立,请写出它们所满足的数量关系式,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列选项中,可以用来说明命题“两个锐角的和是锐角”是假命题的反例的是( )
A.∠A=30°,∠B=40°
B.∠A=30°,∠B=110°
C.∠A=30°,∠B=70°
D.∠A=30°,∠B=90°
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com