【题目】已知在矩形ABCD中,∠ADC的平分线DE与BC边所在的直线交于点E,点P是线段DE上一定点(其中EP<PD)
(1)如图1,若点F在CD边上(不与D重合),将∠DPF绕点P逆时针旋转90°后,角的两边PD、PF分别交射线DA于点H、G.
①求证:PG=PF; ②探究:DF、DG、DP之间有怎样的数量关系,并证明你的结论.
(2)拓展:如图2,若点F在CD的延长线上(不与D重合),过点P作PG⊥PF,交射线DA于点G,你认为(1)中DF、DG、DP之间的数量关系是否仍然成立?若成立,给出证明;若不成立,请写出它们所满足的数量关系式,并说明理由.
【答案】(1)(2)见解析
【解析】(1)①若证PG=PF,可证△HPG≌△DPF,已知∠DPH=∠HPG,由旋转可知∠GPF=∠HPD=90°及DE平分∠ADC得△HPD为等腰直角三角形,即∠DHP=∠PDF=45°、PD=PH,即可得证;
②由△HPD为等腰直角三角形,△HPG≌△DPF知HD=DP,HG=DF,根据DG+DF=DG+GH=DH即可得;
(2)过点P作PH⊥PD交射线DA于点H,先证△HPD为等腰直角三角形可得PH=PD,HD=DP,再证△HPG≌△DPF可得HG=DF,根据DH=DG﹣HG=DG﹣DF可得DG﹣DF=DP.
解:(1)①∵∠GPF=∠HPD=90°,∠ADC=90°,
∴∠GPH=∠FPD,
∵DE平分∠ADC,
∴∠PDF=∠ADP=45°,
∴△HPD为等腰直角三角形,
∴∠DHP=∠PDF=45°,
在△HPG和△DPF中,
∵∠PHG=∠PDF,PH=PD,∠GPH=∠FPD,
∴△HPG≌△DPF(ASA),
∴PG=PF;
②结论:DG+DF=DP,
由①知,△HPD为等腰直角三角形,△HPG≌△DPF,
∴HD=DP,HG=DF,
∴HD=HG+DG=DF+DG,
∴DG+DF=DP;
(2)不成立,数量关系式应为:DG﹣DF=DP,
如图,过点P作PH⊥PD交射线DA于点H,
∵PF⊥PG,
∴∠GPF=∠HPD=90°,
∴∠GPH=∠FPD,
∵DE平分∠ADC,且在矩形ABCD中,∠ADC=90°,
∴∠HDP=∠EDC=45°,得到△HPD为等腰直角三角形,
∴∠DHP=∠EDC=45°,且PH=PD,HD=DP,
∴∠GHP=∠FDP=180°﹣45°=135°,
在△HPG和△DPF中,
∵∠GPH=∠FPD,∠GHP=∠FDP,PH=PD,
∴△HPG≌△DPF,
∴HG=DF,
∴DH=DG﹣HG=DG﹣DF,
∴DG﹣DF=DP.
“点睛”本题主要考查等腰直角三角形的性质、全等三角形的判定与性质、矩形的性质的综合运用,灵活运用全等三角形的判定与性质将待求证线段关系转移至其他两线段间关系是解题的关键.
科目:初中数学 来源: 题型:
【题目】世界上最轻的昆虫是一种寄生蜂,该寄生蜂的卵每个重量仅有2×10-4毫克,将2×10-4用小数表示为( )
A.20000
B.0.00002
C.0.0002
D.0.2000
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中, .点从点出发沿方向以每秒2个单位长的速度向点匀速运动,同时点从点出发沿方向以每秒1个单位长的速度向点匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点、运动的时间是t秒(t>0).过点作于点,连接、.
(1)求证: ;
(2)四边形能够成为菱形吗?如果能,求出相应的值;
如果不能,说明理由.
(3)当为何值时, 为直角三角形?直接写出t值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列事件中,最适合采用普查的是( )
A.了解一批灯泡的使用寿命B.了解中央电视台《最强大脑》栏目的收视率
C.了解全国中学生体重情况D.了解某班学生对“七步洗手法”的知晓率
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠C=90°,AC=BC,点D是AB的中点,分别过点D作DE⊥AC,DF⊥BC,垂足分别为点E、F.求证:四边形CEDF是正方形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A,B的坐标分别为(1, 4)和(4, 4),抛物线的顶点在线段AB上运动,与x轴交于C、D两点(C在D的左侧),点C的横坐标最小值为,则点D的横坐标最大值为_______。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com