精英家教网 > 初中数学 > 题目详情

【题目】已知甲、乙两种原料中均含有A元素,其含量及每吨原料的购买单价如下表所示:

A元素含量

单价(万元/吨)

甲原料

5%

2.5

乙原料

8%

6

已知用甲原料提取每千克A元素要排放废气1吨,用乙原料提取每千克A元素要排放废气0.5吨,若某厂要提取A元素20千克,并要求废气排放不超过16吨,问:该厂购买这两种原料的费用最少是多少万元?

【答案】解:设需要甲原料x吨,乙原料y吨.由题意,得
由①,得
y=
把①代入②,得x≤
设这两种原料的费用为W万元,由题意,得
W=2.5x+6y=﹣1.25x+1.5.
∵k=﹣1.25<0,
∴W随x的增大而减小.
∴x= ,y=0.1时,W最小=1.2.
答:该厂购买这两种原料的费用最少为1.2万元
【解析】设需要甲原料x吨,乙原料y吨.由20千克=0.02吨就可以列出方程5%x+8%y=0.02和不等式5%x×1000×1+8%y×1000×0.5≤16,设购买这两种原料的费用为W万元,根据条件可以列出表达式,由函数的性质就可以得出结论.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx(a>0)经过原点O和点A(2,0).
(1)写出抛物线的对称轴与x轴的交点坐标;
(2)点(x1 , y1),(x2 , y2)在抛物线上,若x1<x2<1,比较y1 , y2的大小;
(3)点B(﹣1,2)在该抛物线上,点C与点B关于抛物线的对称轴对称,求直线AC的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是平行四边形,DE平分∠ADC交AB于点E,BF平分∠ABC,交CD于点F.
(1)求证:DE=BF;
(2)连接EF,写出图中所有的全等三角形.(不要求证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,二次函数y=ax2+bx﹣3(a,b是常数)的图象与x轴交于点A(﹣3,0)和点B(1,0),与y轴交于点C.动直线y=t(t为常数)与抛物线交于不同的两点P、Q.

(1)求a和b的值;
(2)求t的取值范围;
(3)若∠PCQ=90°,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:
(1) ﹣(﹣2)2+(﹣0.1)0
(2)(x+1)2﹣(x+2)(x﹣2).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若关于x的一元二次方程ax2+3x-1=0有两个不相等的实数根,则a的取值范围是.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,AC=BC=6cm , 点P从点A出发,沿AB方向以每秒 cm的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒1cm的速度向终点C运动,将△PQC沿BC翻折,点P的对应点为点P′.设点Q运动的时间为t秒,若四边形QPCP′为菱形,则t的值为(  ).

A.
B.2
C.2
D.3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点D、E分别在线段AB、AC上且∠ABC=∠AED , 若DE=4,AE=5,BC=8,则AB的长为(  )
A.
B.10
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知b2-4ac是一元二次方程ax2+bx+c=0(a≠0)的一个实数根,则ab的取值范围为(  )
A.ab≥
B.ab
C.ab≥
D.ab

查看答案和解析>>

同步练习册答案