精英家教网 > 初中数学 > 题目详情

【题目】如图,一块长5米宽4米的地毯,为了美观设计了两横、两纵的配色条纹(图中阴影部分),已知配色条纹的宽度相同,所占面积是整个地毯面积的

(1)求配色条纹的宽度;

(2)如果地毯配色条纹部分每平方米造价200元,其余部分每平方米造价100元,求地毯的总造价.

【答案】;(2) 2425元

【解析】试题分析:

(1)设配色条纹部分的宽度为米,根据题意可列方程: ,解方程并根据实际意义检验可得结果;

(2)由条纹部分占总面积的、非条纹部分占总面积的,总面积为200平方米,可分别计算出条纹部分和非条纹部分的造价相加可得总造价.

试题解析

解:(1)设条纹的宽度为米.依题意得:

解得: (不合题意,舍去),

答:配色条纹的宽度为米.

2由题意可得条纹部分造价: ×5×4×200=850(元)

其余部分造价:(1×4×5×100=1575(元)

总造价为:850+1575=2425(元)

答:地毯的总造价是2425元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图在矩形 ABCD AB=8BC=6AE=BE,点 F 为边 BC 上任意一点,将BEF 沿着 EF 翻折,点 B 为点 B 的对应点,则当BCD 的面积最小时BCF 的面积为(

A.4B.6C.4.2D.3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,ABADCD,以AB为直径的⊙O经过点C,连接ACOD交于点E

1)证明:ODBC

2)若AD是⊙O的切线,连接BD交于⊙O于点F,连接EF,且OA1,求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在 10×6 的正方形网格中,每个小正方形的边长均为 1,线段 AB 的端点 AB 均在小正方形的顶点上.

1)在图中画出以 AB 为一腰的等腰ABC,点 C 在小正方形顶点上,ABC 为钝角三角形,且ABC 的面积为

2)在图中画出以 AB 为斜边的直角三角形 ABD D在小正方形的顶点上,且 AD>BD

3)连接 CD,请你直接写出线段 CD 的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线的顶点为A(-3,-3),此抛物线交x轴于O、 B两点.

(1)求此抛物线的解析式.

(2)求△AOB的面积 .

(3)若抛物线上另有点P满足S△POB=S△AOB,请求出P坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线顶点Ax轴负半轴上,与y轴交于点BOB1,△OAB为等腰直角三角形

1)求抛物线的解析式

2)若点C在抛物线上,若△ABC为直角三角形,求点C的坐标

3)已知直线DE过点(-1,-4),交抛物线于点DE,过DDFx轴,交抛物线于点F,求证:直线EF经过一个定点,并求定点的坐标

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个盒子中有1个白球和2个红球,这些球除颜色外都相同.

⑴如果从盒子中随机摸出1个球,摸出红色球的概率为_____________;

⑵若从盒子中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,请通过列表或画树状图的方法,求两次摸到不同颜色球的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线为常数).

1)当该抛物线经过坐标原点,并且顶点在第四象限时,求出它所对应的函数关系式;

2)设是(1)所确定的抛物线上位于轴下方、且在对称轴左侧的一个动点,过轴的平行线,交抛物线于另一点,再作轴于轴于.

①当时,求矩形的周长;

②试问矩形的周长是否存在最大值?如果存在,请求出这个最大值,并指出此时点的坐标.如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,四边形ABCD是菱形,点A(0,4),B(﹣3,0)反比例函数y=(k为常数,k≠0,x>0)的图象经过点D.

(1)填空:k=_____

(2)已知在y=的图象上有一点N,y轴上有一点M,且四边形ABMN是平行四边形,求点M的坐标.

查看答案和解析>>

同步练习册答案