【题目】如图,抛物线的顶点为A(-3,-3),此抛物线交x轴于O、 B两点.
(1)求此抛物线的解析式.
(2)求△AOB的面积 .
(3)若抛物线上另有点P满足S△POB=S△AOB,请求出P坐标.
【答案】⑴抛物线解析式为:y=,或y=;⑵9;⑶P(-3+3,3)或(-3-3,3).
【解析】试题分析:(1)设抛物线的解析式为y=a(x+3)23,然后把原点坐标代入求出a即可;
(2)根据抛物线的对称性确定B点坐标,然后根据三角形的面积公式求解;
(3)设P点坐标为(x,y),根据S△POB=S△AOB可计算出y,然后利用二次函数的解析式计算对应的x的值,从而得到P点坐标.
试题解析:
(1)如图,连接AB、OA.设抛物线的解析式为y=a(x+3)3,
把(0,0)代入得a×3 3=0,解得a=,
所以此抛物线的解析式为y=(x+3)3;
(2)∵抛物线的对称轴为直线x=3,
∴B点坐标为(6,0),
∴△AOB的面积=×6×3=9;
(3)设P点坐标为(x,y),
∵S△POB=S△AOB,
∴|y|×6=9,
解得y=3或y=3(舍去),
∴(x+3)3=3,
解得x=33,x=33,
∴P点坐标为(33,3),(33,3).
科目:初中数学 来源: 题型:
【题目】先化简,再求值:,其中|x|≤1,且x为整数.
小海同学的解法如下:
解:原式=﹣ ①
=(x﹣1)2﹣x2+3 ②
=x2﹣2x﹣1﹣x2+3 ③
=﹣2x+2.④
当x=﹣1时,⑤
原式=﹣2×(﹣1)+2⑥
=2+2=4.⑦
请指出他解答过程中的错误(写出相应的序号,多写不给分),并写出正确的解答过程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,ABCD为矩形,以CD为直径作半圆,矩形的另外三边分别与半圆相切,沿着折痕DF折叠该矩形,使得点C的对应点E落在AB边上,若AD=2,则图中阴影部分的面积为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一座抛物线形拱桥,正常水位桥下面宽度为米,拱顶距离水平面米,如图建立直角坐标系,若正常水位时,桥下水深米,为保证过往船只顺利航行,桥下水面宽度不得小于米,则当水深超过多少米时,就会影响过往船只的顺利航行( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:△ABC在坐标平面内,三个顶点的坐标分别为A(0,3),B(3,4),C(2,2).(正方形网格中,每个小正方形的边长是1个单位长度).
(1)作出△ABC绕点A顺时针方向旋转90°后得到的△A1B1C1,并直接写出C1点的坐标;
(2)作出△ABC关于原点O成中心对称的△A2B2C2,并直接写出B2的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B、C重合的一个动点,把△EBF沿EF折叠,点B落在B′处,若△CDB′恰为等腰三角形,则DB′的长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A、C分别是一次函数y=﹣x+3的图象与y轴、x轴的交点,点B与点C关于原点对称,二次函数y=x2+bx+c的图象经过点B,且该二次函数图象上存在一点D,使四边形ABCD能构成平行四边形.
(1)求二次函数的表达式;
(2)动点P从点A到点D,同时动点Q从点C到点A都以每秒1个单位的速度运动,设运动时间为t秒.
①当t为何值时,有PQ丄AC?
②当t为何值时,四边形PDCQ的面积最小?此时四边形PDCQ的面积是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了提高学生的汉字书写能力,某学校连续举办了几届汉字听写大赛,今年经过层层选拔,确定了参加决赛的选手,决赛的比赛规则是每正确听写出1个汉字得2分,满分是100分,下面是根据决赛的成绩绘制出的不完整的频数分布表、扇形统计图和频数分布直方图.
请结合图表完成下列各题
(1)表中a的值为______,并把频数分布直方图补充完整;
(2)学校想利用频数分布表估计这次决赛的平均成绩,请你直接写出平均成绩;
(3)通过与去年的决赛成绩进行比较,发现今年各类人数的中位数有了显著提高,提高了15%以上,求去年各类人数的中位数最高可能是多少?
(4)想从A类学生的3名女生和2名男生中选出两人进行培训,直接写出选中1名男生和1名女生的概率是多少.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点F在ABCD的对角线AC上,过点F、B分别作AB、AC的平行线相交于点E,连接BF,∠ABF=∠FBC+∠FCB.
(1)求证:四边形ABEF是菱形;
(2)若BE=5,AD=8,sin∠CBE=,求AC的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com