精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC=2,O为AC中点,若点D在直线BC上运动,连接OE,则在点D运动过程中,线段OE的最小值是为_____

【答案】

【解析】

设Q是AB的中点,连接DQ,先证得△AQD≌△AOE,得出QD=OE,根据点到直线的距离可知当QD⊥BC时,QD最小,然后根据等腰直角三角形的性质求得QD⊥BC时的QD的值,即可求得线段OE的最小值.

设Q是AB的中点,连接DQ,
∵∠BAC=∠DAE=90°,
∴∠BAC-∠DAC=∠DAE-∠DAC,
即∠BAD=∠CAE,
∵AB=AC=2,O为AC中点,
∴AQ=AO,
在△AQD和△AOE中,

∴△AQD≌△AOE(SAS),
∴QD=OE,
∵点D在直线BC上运动,
∴当QD⊥BC时,QD最小,
∵△ABC是等腰直角三角形,
∴∠B=45°,
∵QD⊥BC,
∴△QBD是等腰直角三角形,
∴QD=QB,
∵QB=AB=1,
∴QD=
∴线段OE的最小值是为
故选:B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下面是小东设计的在三角形一边上求作一个点,使这点和三角形的两个顶点构成的三角形与原三角形相似的尺规作图过程.

已知:ABC

求作:在BC边上求作一点P,使得PAC∽△ABC

作法:如图,

①作线段AC的垂直平分线GH

②作线段AB的垂直平分线EF,交GH于点O

③以点O为圆心,以OA为半径作圆;

④以点C为圆心,CA为半径画弧,交⊙O于点D(与点A不重合);

⑤连接线段ADBC于点P

所以点P就是所求作的点.

根据小东设计的尺规作图过程,

(1)使用直尺和圆规,补全图形;(保留作图痕迹)

(2)完成下面的证明.

证明:∵CDAC

   

∴∠      

又∵∠      

∴△PAC∽△ABC   )(填推理的依据).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数ykx+b的图象与反比例函数y的图象交于AB两点.

1)利用图中的条件,求反比例函数和一次函数的解析式.

2)求△AOB的面积.

3)根据图象直接写出使一次函数的值大于反比例函数的值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,点DE分别在边ABAC上,DEBC,∠ACD=∠B,那么下列判断中,不正确的是(  )

A. ADE∽△ABC B. CDE∽△BCD C. ADE∽△ACD D. ADE∽△DBC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC,∠BAC=90°,ABACD为直线BC上一动点(点D不与BC重合),AD为直角边在AD右侧作等腰直角三角形ADE且∠DAE=90°,连接CE

(1)如图①,当点D在线段BC上时

BCCE的位置关系为   

BCCDCE之间的数量关系为   

(2)如图②,当点D在线段CB的延长线上时结论①,②是否仍然成立?若不成立请你写出正确结论并给予证明

(3)如图③,当点D在线段BC的延长线上时BCCDCE之间的数量关系为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知正方形ABCD的边长为,连接AC、BD交于点O,CE平分∠ACD交BD于点E,

(1)求DE的长;

(2)过点EF作EF⊥CE,交AB于点F,求BF的长;

(3)过点E作EG⊥CE,交CD于点G,求DG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】两个全等的直角三角形 ABC 和 DEF 重叠在一起,其中∠A=60°,AC=1.固定△ABC 不动,将△DEF 进行如下操作:

(1)如图,△DEF 沿线段 AB 向右平移(即 D 点在线段 AB 内移动),连接 DC、CF、FB,四边形 CDBF 的形状在不断的变化,但它的面积不变化,请求出其面积.

(2)如图,当 D 点移到 AB 的中点时,请你猜想四边形CDBF 的形状,并说明理由.

(3)如图,△DEF 的 D 点固定在 AB 的中点,然后绕 D 点按顺时针方向旋转△DEF,使 DF 落在 AB 边上,此时 F 点恰好与 B 点重合,连接 AE,请你求出 sinα的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在四边形ABCD中,点EAB边上的一点,点F为对角线BD上的一点,且EFAB.若四边形ABCD为正方形.

①如图1,请直接写出AEDF的数量关系   

②将△EBF绕点B逆时针旋转到图2所示的位置,连接AEDF,猜想AEDF的数量关系并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是小李上学用的自行车,型号是24英吋(车轮的直径为24英吋,约60厘米),为了防止在下雨天骑车时的泥水溅到身上,他想在自行车两轮的阴影部分两侧装上挡水的铁皮(两个阴影部分分别是以C、D为圆心的两个扇形),量出四边形ABCD∠DAB=125°、∠ABC=115°,那么预计需要的铁皮面积约是(  )

A. 942平方厘米 B. 1884平方厘米

C. 3768平方厘米 D. 4000平方厘米

查看答案和解析>>

同步练习册答案