精英家教网 > 初中数学 > 题目详情
1.读一读:式子“1+2+3+4+5+…+100”表示1开始的100个连续自然数的和.由于上述式子比较长,书写也不方便,为了简便起见,我们可以将“1+2+3+4+5+…+100”表示为$\sum_{n=1}^{100}$n,这里“$\sum{\;}$”是求和符号.例如:1+3+5+7+9+…+99,即从1开始的100以内的连续奇数的和,可表示为$\sum_{n=1}^{50}{\;}$(2n-1);又如13+23+33+43+53+63+73+83+93+103可表示为$\sum_{n=1}^{10}{\;}$n3.    通过对上以材料的阅读,请解答下列问题.
(1)2+4+6+8+10+…+100(即从2开始的100以内的连续偶数的和)用求和符合可表示为$\sum_{n=1}^{50}2n$;
(2)计算$\sum_{n=2}^{40}$($\frac{1}{2}$n-1).

分析 (1)根据求和符号的含义和表示方法,判断出2+4+6+8+10+…+100(即从2开始的100以内的连续偶数的和)用求和符合可表示为多少即可.
(2)根据等差数列的求和方法,求出$\sum_{n=2}^{40}$($\frac{1}{2}$n-1)的值是多少即可.

解答 解:(1)2+4+6+8+10+…+100(即从2开始的100以内的连续偶数的和)用求和符合可表示为:$\sum_{n=1}^{50}2n$.
(2)$\sum_{n=2}^{40}$($\frac{1}{2}$n-1)
=$\frac{1}{2}$(2+4+6+…+40)-20
=$\frac{1}{2}$×$\frac{(2+40)×20}{2}$-20
=210-20
=190
故答案为:$\sum_{n=1}^{50}2n$.

点评 此题主要考查了求和符号的应用,以及等差数列的求和公式的应用,要熟练掌握.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.已知抛物线的解析式为y=x2-(2m-1)x+m2-m.求证:此抛物线与x轴必有两个不同的交点.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,AB=AC=AD,∠CBD=2∠BDC,∠BAC=40°,求∠CAD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.某公司生产的商品的市场指导价位每件300元,公司的实际销售价格可以浮动x个百分点(即销售价格=300(1+x%)),经过市场调研发现,这种商品的日销售量y(件)与销售价格浮动的百分点x之间的函数关系为y=-2x+24,若该公司按浮动-12个百分点的价格出售,每件商品仍可获利10%.
(1)求该公司生产销售每件商品的成本为多少元?
(2)当实际销售价格定为多少元时,日销售利润为1320元?(说明:日销售利润=(销售价格-成本)×日销售量)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.解方程求出两个根x1、x2,并计算两个根的和与积,完成下表.
 方程 x1 x2 x1+x2 x1•x2
 9x2-2=0 $\frac{\sqrt{2}}{3}$-$\frac{\sqrt{2}}{3}$ 0 
 2x2-3x=0 0 $\frac{3}{2}$ $\frac{3}{2}$ 0
 x2-3x+2=0 1 2 3 2
 关于x的方程ax2+bx+c=0(a≠0,b2-4ac≥0) $\frac{-b+\sqrt{{b}^{2}-4ac}}{2a}$ $\frac{-b-\sqrt{{b}^{2}-4ac}}{2a}$  
(1)补全上述表格;
(2)观察表格中方程两个解的和、两个解的积与原方程的系数之间的关系有什么规律?写出你的结论;(用文字或式子表达)
(3)根据表格中所得的规律解答:已知x1,x2是方程3x2-4x-2=0的两根,求x12+x22的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.观察下列等式$\frac{1}{1×2}$=1-$\frac{1}{2}$,$\frac{1}{2×3}$=$\frac{1}{2}$-$\frac{1}{3}$,$\frac{1}{3×4}$=$\frac{1}{3}$-$\frac{1}{4}$,把以上三个等式两边分别相加得:$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$=1-$\frac{1}{4}$=$\frac{3}{4}$.
(1)猜想并写出:$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$.
(2)直接写出下列各式的计算结果:
①$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+…+$\frac{1}{2008×2009}$=$\frac{2008}{2009}$;
②$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+…+$\frac{1}{n(n+1)}$=$\frac{n}{n+1}$.
(3)探究并计算:$\frac{1}{2×4}+\frac{1}{4×6}+\frac{1}{6×8}$+…+$\frac{1}{2006×2008}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.已知a2+b2-6a+4b+13=0,求[(2a+b)2-(2a-b)(a+b)-2(a-2b)(a+2b)]÷($\frac{1}{3}$b)的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,矩形ABCD的两条对角线交于点O,DE∥AC,CE∥DB,DE和CE交于点E,求证:OE和CD互相垂直平分.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.【问题提出】
学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.
【初步思考】
我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.
【深入探究】
第一种情况:当∠B是直角时,△ABC≌△DEF.
(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据HL,可以知道Rt△ABC≌Rt△DEF.
第二种情况:当∠B是钝角时,△ABC≌△DEF.
(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.
第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.
(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)
(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若∠B≥∠A,则△ABC≌△DEF.

查看答案和解析>>

同步练习册答案