精英家教网 > 初中数学 > 题目详情

【题目】矩形与矩形如图放置,点共线,共线,连接,取的中点,连接,若,则

A. B. C. 2D.

【答案】A

【解析】

如图,延长GHAD于点M,先证明△AHM△FHG,从而可得AM=FG=1HM=HG,进而得DM=AD-AM=2,继而根据勾股定理求出GM的长即可求得答案.

如图,延长GHAD于点M

∵四边形ABCDCEFG是矩形,

AD=BC=3CG=EF=3FG=CE=1∠CGF=90°∠ADC=90°

DG=CG-CD=3-1=2∠ADG=90°=∠CGF

∴AD//FG

∠HAM=∠HFG∠AMH=∠FGH

AH=FH

△AHM△FHG

AM=FG=1HM=HG

∴DM=AD-AM=3-1=2

GM=

GM=HM+HG

∴GH=

故选A.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】先化简,再求值:

阅读材料,大数学家高斯在上学读书时曾经研究过这样一个问题:1+2+3++100=?经过研究,这个问题的一般性结论是1+2+3++,其中n是正整数。现在我们来研究一个类似的问题:1×2+2×3+=?

观察下面三个特殊的等式

将这三个等式的两边相加,可以得到1×2+2×3+3×4

读完这段材料,请你思考后回答:(只需写出结果,不必写中间的过程)

(1)     

(2)1×22×33×4n×(n+1)=      

(3)       

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在运动会径赛中,甲、乙同时起跑,刚跑出200m,甲不慎摔倒,他又迅速地爬起来继续投入比赛,若他们所跑的路程ym)与比赛时间xs)的关系如图,有下列说法:①他们进行的是800m比赛;②乙全程的平均速度为6.4m/s;③甲摔倒之前,乙的速度快;④甲再次投入比赛后的平均速度为7.5m/s;⑤甲再次投入比赛后在距离终点300米时追上了乙.其中正确的个数有(  )

A.2B.3C.4D.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小张骑车往返于甲、乙两地,距甲地的路程y(千米)与时间x(时)的函数图象如图所示.

(1)小张在路上停留  小时,他从乙地返回时骑车的速度为   千米/时;

(2)小王与小张同时出发,按相同路线匀速前往乙地,距甲地的路程y(千米)与时间x(时)的函数关系式为y=10x+10.请作出此函数图象,并利用图象回答:小王与小张在途中共相遇   次;

(3)请你计算第三次相遇的时间.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在中,,把一块含角的三角板的直角顶点放在的中点上(直角三角板的短直角边为,长直角边为),点上,点.

(1)求重叠部分的面积;

(2)如图2,将直角三角板点按顺时针方向旋转30度,于点于点.

①请说明:

②在此条件下,与直角三角板重叠部分的面积会发生变化吗?请说明理由,并求出重叠部分的面积.

(3)如图3,将直角三角板点按顺时针方向旋转()于点于点,则的结论仍成立吗?重叠部分的面积会变吗?(请直接写出结论,不需要说明理由)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(4,0)两点,与y轴相交于点C,连结BC,点P为抛物线上一动点,过点P作x轴的垂线l,交直线BC于点G,交x轴于点E.

(1)求抛物线的表达式;

(2)当P位于y轴右边的抛物线上运动时,过点C作CF直线l,F为垂足,当点P运动到何处时,以P,C,F为顶点的三角形与OBC相似?并求出此时点P的坐标;

(3)如图2,当点P在位于直线BC上方的抛物线上运动时,连结PC,PB,请问PBC的面积S能否取得最大值?若能,请出最大面积S,并求出此时点P的坐标,若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AD∥BC,要使四边形ABCD为平行四边形,需要增加的一个条是:_____.(只填一个你认为正确的条件即可,不添加任何线段与字母)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:关于的两个一次二项式,其中任意一个式子的一次项系数都是另一个式子的常数项,则称这两个式子互为田家炳式”.例如,式子互为田家炳式”.

1)判断式子______(填不是)互为田家炳式

2)已知式子田家炳式且数在数轴上所对应的点为.在数轴上有一点两点的距离的和,求点在数轴上所对应的数.

3)在(2)的条件下,若点,点同时沿数轴向正方向运动,点的速度是点速度的2倍,且3秒后,,求点的速度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在四边形ABCD中,∠A=∠C90°

1)∠ABC+∠ADC  °

2)如图①,若DE平分∠ADCBF平分∠ABC的外角,请写出DEBF的位置关系,并证明;

3)如图②,若BEDE分别四等分∠ABC、∠ADC的外角(即∠CDECDN,∠CBECBM),试求∠E的度数.

查看答案和解析>>

同步练习册答案