精英家教网 > 初中数学 > 题目详情

【题目】先化简,再求值:

阅读材料,大数学家高斯在上学读书时曾经研究过这样一个问题:1+2+3++100=?经过研究,这个问题的一般性结论是1+2+3++,其中n是正整数。现在我们来研究一个类似的问题:1×2+2×3+=?

观察下面三个特殊的等式

将这三个等式的两边相加,可以得到1×2+2×3+3×4

读完这段材料,请你思考后回答:(只需写出结果,不必写中间的过程)

(1)     

(2)1×22×33×4n×(n+1)=      

(3)       

【答案】1343400;(2nn+1)(n+2);(3nn+1)(n+2)(n+3).

【解析】

1)根据三个特殊等式相加的结果,代入熟记进行计算即可求解;

2)先对特殊等式进行整理,从而找出规律,然后把每一个算式都写成两个两个算式的运算形式,整理即可得解;

3)根据(2)的求解规律,利用特殊等式的计算方法,先把每一个算式分解成两个算式的运算形式,整理即可得解.

因为1×2+2×3+3×43×4×5=20,即1×2+2×3+3×43×(3+1)×(3+2=20,故:

1)原式100×(100+1)×(100+2100×101×102=343400

2)原式nn+1)(n+2);

3)∵1×2×3=[1×2×3×40×1×2×3]2×3×4=[2×3×4×51×2×3×4]...nn+1)(n+2= [nn+1)(n+2)(n+3)﹣nn1)(n+1)(n+2]

∴原式=[1×2×3×40×1×2×3]+ [2×3×4×51×2×3×4]+...+ [nn+1)(n+2)(n+3)﹣nn1)(n+1)(n+2]=nn+1)(n+2)(n+3).

故答案为:343400nn+1)(n+2);nn+1)(n+2)(n+3).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】计算(1 2

3 4

5 6

7 8

9 10

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于一次函数,下列结论错误的是( )

A.函数的图象与轴的交点坐标是

B.函数值随自变量的增大而减小

C.函数的图象不经过第三象限

D.函数的图象向下平移个单位长度得到的图象

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,测量人员在山脚A处测得山顶B的仰角为45°,沿着仰角为30°的山坡前进1000米到达D处,在D处测得山顶B的仰角为60°,求山的高度?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料并完成任务:

中国古代三国时期吴国的数学家赵爽最早对勾股定理作出理论证明.他创制了一幅勾股圆方图”(如图l),用数形结合的方法,给出了勾股定理的详细证明.在这幅勾股圆方图中,以弦为边长得到的正方形是由个全等的直角三角形再加上中间的那个小正方形组成的.每个直角三角形的面积为;中间的小正方形边长为,面积为.于是便得到式子:.赵爽的这个证明可谓别具匠心,极富创新意识.他用几何图形的截、割、拼、补来证明代数式之间的恒等关系,既具严密性,又具直观性,为中国古代以形证数、形数统一、代数和几何紧密结合、互不可分的独特风格树立了一个典范.如图2,是赵爽弦图,其中是四个全等的直角三角形,四边形都是正方形,根据这个图形的面积关系,可以证明勾股定理.,取.

任务:

(1)填空:正方形的面积为______,四个直角三角形的面积和为______

(2)的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题背景:我们学习等边三角形时得到直角三角形的一个性质:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.即:如图1,在RtABC中,∠ACB=90°,ABC=30°,则:AC=AB.

探究结论:小明同学对以上结论作了进一步研究.

(1)如图1,连接AB边上中线CE,由于CE=AB,易得结论:①△ACE为等边三角形;②BECE之间的数量关系为  

(2)如图2,点D是边CB上任意一点,连接AD,作等边ADE,且点E在∠ACB的内部,连接BE.试探究线段BEDE之间的数量关系,写出你的猜想并加以证明.

(3)当点D为边CB延长线上任意一点时,在(2)条件的基础上,线段BEDE之间存在怎样的数量关系?请直接写出你的结论  

拓展应用:如图3,在平面直角坐标系xOy中,点A的坐标为(﹣,1),点Bx轴正半轴上的一动点,以AB为边作等边ABC,当C点在第一象限内,且B(2,0)时,求C点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2016双十一期间,某快递公司计划租用甲、乙两种车辆快递货物,从货物量来计算:若租用两种车辆合运,10天可以完成任务;若单独租用乙种车辆,完成任务的天数是单独租用甲种车辆完成任务天数的2倍.

(1)求甲、乙两种车辆单独完成任务分别需要多少天?

(2)已知租用甲、乙两种车辆合运需租金65000元,甲种车辆每天的租金比乙种车辆每天的租金多1500元,试问:租甲和乙两种车辆、单独租甲种车辆、单独租乙种车辆这三种租车方案中,哪一种租金最少?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】AB在数轴上分别表示有理数abAB两点之间的距离表示为|AB|,利用数形结合思想回答下列问题:

1)数轴上表示﹣31两点之间的距离是   

2)数轴上表示x和﹣2的两点之间的距离表示为   

3)若x表示一个有理数,且-3x1,则|x1|+|x+3|的最小值是   

4)若x表示一个有理数,且|x1|+|x+3|>4,则有理数x的取值范围是 

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】矩形与矩形如图放置,点共线,共线,连接,取的中点,连接,若,则

A. B. C. 2D.

查看答案和解析>>

同步练习册答案