精英家教网 > 初中数学 > 题目详情

如图,△ABC中,AM,CM分别是角平分线,过M作DE∥AC,求证:AD+CE=DE.

证明:∵AM平分∠BAC,CM平分∠BCA,
∴∠DAM=∠CAM,∠ACM=∠ECM,
∵DE∥AC,
∴∠DMA=∠CAM,∠EMC=∠ACM,
∴∠DMA=∠DAM,∠EMC=∠ECM,
∴AD=DM,CE=EM,
∵DM+EM=DE,
∴AD+CE=DE.
分析:根据角平分线性质得出∠DAM=∠CAM,∠ACM=∠ECM,根据平行线性质得出∠DMA=∠CAM,∠EMC=∠ACM,推出∠DMA=∠DAM,∠EMC=∠ECM,根据等腰三角形判定推出AD=DM,CE=EM,代入DM+EM=DE即可.
点评:本题考查平行线性质,等腰三角形的性质和判定,角平分线性质等知识点,关键是求出AD=DM,CE=EM,题目具有一定的代表性,是一道比较好的题目.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.
求证:∠A=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知:如图,△ABC中,∠BAC=60°,D、E两点在直线BC上,连接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求证:∠ANM=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度数;
(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.

查看答案和解析>>

同步练习册答案